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Abstract

In the past several decades, many demand-side participation features have been applied in

the electricity power systems. These features, such as distributed generation, on-site
storage and demand response, add uncertainties to both the short-term and long-term

operation of the modem power systems. On the contrary, many modem power systems

are characterized by the deregulated market structure. How to operate these features

under deregulated power markets is worth consideration.

This thesis presents a new demand responsive bidding mechanism in wholesale

electricity pools. The proposed bidding mechanism models demand response with Price

Elasticity Matrices (PEM). Under the proposed bidding mechanism, the resultant

generation schedules and electricity rates become dependent variable on demand

response. This relation gives bidding results that are closer to the actual market

equilibrium. By applying this bidding mechanism, more efficient market behaviors are

achieved in the short term, and generation and transmission resources are better utilizes in

the long term. In addition, compared to the market clearing price and generation dispatch
schedule settled by the traditional bidding mechanisms, bidding results obtained under

our proposed mechanisms are more effective instructions for the design and

implementation of demand-side participation programs.

This thesis presents the design of the proposed bidding mechanism in terms of its bidding

rules, bidding acceptance rules and settlement rules. The bidding mechanism's

mathematical model is formulated as an optimization problem. Bidding results are

obtained as closed-formed solution of the optimization problem. In addition, this thesis

presents an improved market interaction algorithm to implement the bidding mechanism.

Multiple benefits of applying the bidding mechanism are shown by numerical example
under various system statuses and end-user response types.
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Chapter 1

Introduction

1.1 Overview
During the past several decades, people have been constantly making effort to reduce the

conflict between growing demand load and limited generation. To solve these problems,

demand-side participation features, such as distributed generation, on-site storage and

demand response programs, have been added to the modem power system [1-3].

Although the emergence of these features brings about more flexibility and options to

both the supply and demand side, they also increase uncertainties in the power systems.

For example, by sending certain price signals, some demand response programs can

instruct end users to curtail, store or shift their potentially consumed electric energy. This

operation may lead to temporary demand relief and price spike reduction. However, the

resultant load profile of each time-period and the total energy to consume becomes

different from the forecasted load value. Thus, in short-term power system operations like

day-ahead electricity market, it is hard for system operators to predict the demand and to

dispatch the generation for the next day; in long-term planning, planners may have

difficulties to decide the capacity of the generation and transmission capacity.

So far, electricity market deregulation has been suggested as an effective measure

for better utilizing generation and transmission resources as well as reducing electricity

cost on both supply and demand sides. In the many deregulated electricity markets, bid-

based auctions determine the electricity rate and generation schedules by solving

optimization problems. This process makes the resultant electricity rate and generation

schedules dependent variables on the forecasted demand. How to design and implement

the mentioned features, such as demand response programs, under the complex

deregulated market context is another problem in modem power systems [4-6].

The problem generated by the demand-side participation features and the

deregulated market structure of modem power systems cannot be solved by only

considering the demand-side participation or the electricity market separately [7, 8]. On



one hand, among all these demand-side participation features, demand response programs

have the most extensive effect on power systems and all end users. On the other hand, in

the deregulated electricity markets, generation schedules and electricity rates are

determined through bid-based auctions (which are also called bidding mechanisms).

Therefore, a bidding mechanism considering demand-side market participation is a

promising direction to solve the mentioned problems arising from both sides. However,

the existing bidding mechanisms either ignore the demand-side or only cover limited

form of the demand response programs (demand-side bid in emergency market), and fail

to address the full mentioned features [8-10].

For this reason, this thesis presents a new demand responsive bidding mechanism

in wholesale electricity pools. The proposed bidding mechanism models demand

response with Price Elasticity Matrices (PEM). Under the proposed bidding mechanism,

the resultant generation schedule and electricity rate become dependent variable on

demand response. This relation gives bidding results that are closer to the actual market

equilibrium. By applying this bidding mechanism, more efficient market behaviors are

achieved in the short term and generation and transmission resources are better utilized in

the long term. In addition, compared to the market clearing price and generation dispatch

schedule settled by the traditional bidding mechanisms, bidding results obtained under

our proposed mechanisms are more effective instructions for the design and

implementation of the demand-side participation programs.



1.2 Outline and Contributions
This section includes an outline of the rest of the thesis. Chapter 2 gives the background

of electricity markets, demand response and bidding mechanism designs. Section 2.1

introduces the concept of electricity market deregulation, the electricity market structures

and architectures after deregulation. Section 2.2 introduces demand response's working

principle and its role in the U.S. electricity markets. Furthermore, it states the problems

and challenges that demand response brings to the U.S. electricity markets. Section 2.3

presents the designs of bidding mechanisms in electricity markets. It introduces the three

parts of a bidding mechanism: bidding rules, bidding acceptance rules and settlement

rules. Traditional bidding mechanisms in day-ahead market and real-time market are

reviewed by these parts in this section.

After the background chapter, all the material presented is original, except for that

which is repeated to show how it can be generalized by or compared to our new results.

In Chapter 3 we cover those contributions which are of a theoretical nature.

* We propose a demand responsive bidding mechanism, which considers end-user

response with inter-temporal load shifting. Bidding rules, bidding acceptance

rules and settlement rules are defined for this bidding mechanism. PEMs are used

to model all end-user response types. Bidding results obtained from the proposed

bidding mechanism are closer to the actual market equilibrium.

* A mathematical model of the proposed bidding mechanism is formulated as an

optimization problem. By deriving the closed-form solution of this problem, we

show that the pricing structure of the proposed bidding mechanism is the same as

the spot pricing structure proposed in Schweppe's work [11, 12]. In addition, we

show that the shadow prices of the generation and demand inter-temporal

conditions are included in the market clearing price under the proposed bidding

mechanism.

* We give the sensitivity analysis of the proposed bidding mechanism under four

disturbances: change in generation cost, changing in generation capacity, change

in transmission limits and change in demand response programs. The robust

conditions under these four disturbance types are derived.



* We give a full classification of the PEMs based on end-user response types.

Furthermore, we point out the factors affecting the PEM's establishment:

affecting periods, affected periods and incentive timings of demand response

programs. We also present several methods of estimating the PEMs.

* Based on the market interaction algorithm proposed in David's work [13], we

propose an improved algorithm for the proposed bidding mechanism. This

improved algorithm can detect the two causes for market non-convergence:

demand clears the market and steep local relative slope of the supply curve,

where the second condition and the concept of relative slope is defined originally

in this work. By applying this improved algorithm, market equilibriums are found

in the previous non-convergent cases.

Chapter 4 presents numerical examples of the proposed bidding mechanism in

day-head and hourly-ahead markets. Section 4.1 states the simulation environment and

data background of the numerical examples. Section 4.2 and Section 4.3 give numerical

examples under various end-user response types. Section 4.4 gives examples under

system with generation-side contingencies. Section 4.5 gives examples under systems

with renewable energy. Section 4.6 shows different non-convergence cases and how

market equilibriums are found in these cases according to the proposed algorithm.

We close with Chapter 5 which summaries our results.



Chapter 2

Background

2.1 Electricity Market
An electricity market is a system for selling and purchasing electricity, using supply and

demand to set the prices and schedules under given physical constraints. The design of an

electricity market defines the physical dispatching procedure in the short term, and thus

affects the power systems' planning decision in the long term. A basic understanding of

electricity markets is essential for us to study the bidding mechanisms and the demand-

side participation activities in the environment. This section introduces an important

characteristic of modem electricity market deregulation. It also provides an overview of

the structures and architectures of deregulated electricity markets.

2.1.1 Electricity Market Deregulation

History of electricity market deregulation

The concept of electricity market deregulation was first raised by Samuel Insull, who was

elected president of the National Electric Light Association in 1898. In his historic

presidential address to NELA, Insull explained not only why the electricity business was

a "natural monopoly" but why it should be regulated and why this regulation should be at

the state level, not the local level. Insull argued that

exclusive franchises should be coupled with the conditions of public

control, requiring all charges for services fixed by public bodies to be

based on cost plus a reasonable profit.

These ideas led directly to regulatory laws passed by New York and Wisconsin in

1907. Unfortunately, the deregulation resultant from the action of these laws was



unsuccessful. Both the end-users and the supply side agreed that competition was

inefficient and that providing electricity was a natural monopoly.

Until the early 1980s, the energy market concepts and privatization to electric

power systems was again brought up in Chile. The Chilean model was generally

perceived as successful in bringing rationality and transparency to power pricing, but it

suffered from the continuing dominance of several large incumbents and the attendant

structural problems. Argentina improved on the Chilean model by imposing strict limits

on market concentration and by improving the structure of payments to units held in

reserve to assure system reliability. During the 1990s, the World Bank was active in

introducing a variety of hybrid markets in other Latin American nations, including Peru,

Brazil and Colombia, with limited success.

In 1990, the UK Government under Margaret Thatcher privatized the UK

Electricity Supply Industry. The process followed by the British was then used as a

model or at least a catalyst for the deregulation of several other Commonwealth countries,

notably Australia and New Zealand, and regional markets such as Alberta. However, in

many of these other instances the market deregulation occurred without the widespread

privatization that characterized the UK example.

China dismantled the State Power Corporation on December 29, 2002 and set up

11 new companies in a move to end the corporation's monopoly of the power industry.

The former State Power Corporation owned 46% of the country's electricity generation

assets and 90% of the electricity supply assets. The new companies include two power

grid operators, namely the State Power Grid and China South Power Grid. Each of the

five electricity generation companies own less than 20% of China's market. They will

compete with each other for signing contracts with the power grid operators. The country

also set up the State Power Regulatory Commission on December 30, 2002, to supervise

market competition and issue licenses to operators in the power industry [14].

Today, more than a dozen semi-deregulated electricity markets are operating in at

least ten countries, with several operating in the United States, shown in figure 2.1.1.

Between 1997 and 2007, the amount of competitive generation has increased almost five-

fold, from 8.5% to 40% of the total U.S. generation capacity [ 10].



Fig. 2.1.1 The deregulation of the electricity markets in the U.S. The colored regions
are the electricity markets that have been deregulated.

Benefits of electricity market deregulation

Until now, competition in wholesale power markets, as one stage of electricity

market deregulation has been, and continues to be fostered by national policy. In each

major energy bill over the last few decades, Congress has acted to open up the wholesale

electric power market by facilitating entry of new generators to compete with traditional

utilities. As the third major federal law enacted in the last 30 years to embrace wholesale

competition, the Energy Policy Act of 2005 strengthened the legal framework for
continuing wholesale competition as federal policy for this country. The Commission has
acted quickly and strongly over the years to implement this national policy. The
execution of these policies and the electricity market practice for many years has proved
that multiple benefits can be achieved through electricity market deregulation. These
benefits include [3, 15]:



stronger cost-minimizing incentives than typical "cost-of-service" regulation.

These incentives result in suppliers making many kinds of cost-saving

innovations more quickly. These include labor saving techniques, more

efficient repairs, cheaper construction costs on new plants, and wiser

investment choices.

* lower price to marginal cost. Sioshansi [10] argues that this is less of an

advantage simply because traditional regulation has stressed this side of the

regulatory trade-off. However, more agree that price minimization can still

be a significant advantage.

* more accurate pricing. This can be done through demand-side market

participation (which is introduced in section 2.3). Because it imposes the

real-time wholesale spot prices on the retailer's marginal purchases,

wholesale competition should encourage real-time pricing for end-users. As

evidence, the amount of load enrolled in demand-response programs [3] in

summer 2007, was 20,864 MW of demand-response resources - the

equivalent of 40 commercial-sized base-load generation units enrolled in the

U.S. deregulated electricity markets.

* less pollution. Competitive electricity markets are not the single driver

behind these regional differences, but the efficiency gains, wide geographic

footprints and integration of renewable energies that accompany competition

will become even more necessary with the approach of new climate change

regulations. Restructured markets are clearly leading the way in addressing

climate change, shown in figure 2.1.2.

* encouraging innovations. Distributed generation is an area in which

innovations arise much more quickly under competition than under

regulation; cogeneration is an example. Regulated utilities found such

projects extremely awkward at best, so avoided them. A competitive market

easily allows the flexibility that such projects require.

* getting both incentives of innovation and prices right at the same time. Again

cogeneration provides an example. Once regulation decided to encourage it,

they needed to price cogenerated power. A formula was designed with the



intuition of mimicking a market price. Naturally, political forces intervened

and the result was long-term contracts signed at very high prices [15]. These

gave strong, probably much too strong, incentives for cogeneration. A

competitive market can get both incentives and prices right at the same time.

Carbon Dioxide Emissions in
Restructured vs. Non-Restructured States
Per Megawatt Hour

Fig. 2.1.2: Carbon dioxide emission in regulated and deregulated electricity

market.[15]

2.1.2 Deregulated Electricity Market Structure

Participants in deregulated electricity markets

The electric power sectors in the United States can be described as generation,

transmission, distribution and end-users, from where electricity is generated to where it is

consumed.

The generation of electricity involves the creation of electric energy using falling

water, internal combustion engines, steam turbines powered with steam produced with

fossil fuels, nuclear fuel and various renewable fuels, wind driven turbines and

photovoltaic technologies. Different types of generating plants are characterized by

different shares of fixed and variable cost. This cost structure means there is an order for



plant dispatch, the so-called "merit order", which minimizes total costs, bringing plant

into operation as demand rises. Hence in a cost-based system, capacity with low variable

and high fixed cost, such as nuclear, is operated as much as possible. This type of

capacity is called base load. The reverse holds for the type of gas plants referred to above,

which are operated at peak or intermediate load.

The transmission of electricity involves the use of wires, transformers and

substation facilities to enable the high voltage "transportation" of electricity between

generating sites and distribution centers. In regulated electricity markets, the transmission

networks are owned by the utilities, who also own the generation and distribution sectors;

in deregulated electricity markets, the transmission networks are owned by an

Independent System Operator (ISO) or a Regional Transmission Organization (RTO) [8].

The distribution of electricity to end-users and local businesses at relatively low

voltages relies on wires and transformers along and under streets and other rights of way.

The distribution functions typically involves both the provision of the services of the

distribution "wires" to end-users as well as a set of retailing functions. These retailing

functions include making arrangements for supplies of power from generators, metering,

billing and various demand management services.

End-users are residences and businesses who consume electricity. By their load

profiles' characteristics, the end-users are usually classified as industrial, commercial and

residential consumers.
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Supply

tmnd
brond

De mnd

Supply

Fig. 2.1.3 Participants in deregulated electricity markets.[8]

Wholesale and retail electricity markets

Financially, after being generated, a single megawatt, is frequently bought and re-

sold a number of times before finally being consumed. Those "re-sale" transactions

make-up the retail electricity market; the other transactions, which are considered "sales

for re-sale," make-up the wholesale electricity market, see figure 2.1.3.

In the retail market, the retailers, who resale electricity, represent the suppliers.

The end-users select the retailers for the electricity supply based on their services and

prices. This market is out of the scope of this paper.

The wholesale market participants include suppliers who can generate power and

connect to the grid, and retailers which are counterparties willing to buy the suppliers'

output. The suppliers include utilities, independent power producers (IPPs), as well as

some excess generation sold by traditional vertically integrated utilities. Retailers usually

own the distribution wires connecting to the end-users. To be a participant in the

wholesale market, however, one does not need to either own any generation or serve any

end-use customers. Just as with many other commodities - pork bellies, oil or stocks -

individual traders (or power marketers) exist who buy power on the open market and re-

I Gneato 9
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Rldfle # R jIer#

C u ---.t o rr, Y #1 1
Cu---tc-imer #2
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sell it. Depending on the market structures, an ISO or TRO is needed to run the

transactions in the wholesale markets under given physical conditions of the power

systems.

Stages of electricity markets deregulation

Based on the concepts of wholesale and retail markets, the deregulation of

electricity markets can be divided into three stages, single buyer, wholesale competition,

and retail competition, see table 2.1.1. Single buyer and wholesale competition exist in

wholesale market deregulation; retail competition exists in retail market deregulation, and

is the final stage of electricity market deregulation. Retail market deregulation allows free

choices from end-users on the retailers of electricity services. In contrast, wholesale

market deregulation requires end-users connect to the local distribution wires' owners. A

number of regions in the U.S, including the Northeast, Mid-Atlantic, much of the

Midwest, ERCOT and California allow for retail competition [10].



TABLE 2.2.1 Stages of electricity market deregulation
------ ......... .......... ...................

2.1.3 Deregulated Electricity Market Architecture

An electricity market's architecture is a map of its component "submarkets" given the

"market type." Both the submarkets and the market type can be classified according to

multiple categories.

Market Types

The most fundamental category of the market type is the transaction content.

Based on this category, the market is either an energy market or a transmission-rights

market. The transmission-rights market is better than an energy market in the sense that

the system operator's role is minimized, and is refrained from trading or pricing energy.

On the other hand, people think the transmission-rights market is impractical. A more

practical way is that at least in real time, the system operator needs to buy and sell energy

directly and needs to set different prices for energy provided at different locations.

Another basic category of the market type is based on the centralization degree of

the market, see figure 2.1.4. There are two basic ways to arrange trades between buyers

and sellers. One way is that buyers and sellers trade directly, that is, making a bilateral

trade. The other way is that suppliers can sell their product to an intermediary who sells it
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Market model Monopoly Single buyer Wholesale Retail

competition competition

Definition Monopolythrough Generation + retailers + end-user

all sectors competition only competition competition

Generation No Yes Yes Yes

competition?

Retailers No No Yes Yes

competition?

End-user No No No Yes

competition?



to end-use customers. In order of increasing centralization, bilateral markets can be

search, bulletin-board, or brokered markets, while mediated markets can be dealer

markets, exchanges, or pools [9, 10].

Arrangement Type of Market

Bilateral:

Mediated:

Search Bulletin Board Brokered

Dealer Exchange Pool
Oeala I NUMEROUS=

Less organized More centralized

Fig. 2.1.4 Market types and centralization degree of the market.

In a bilateral market buyers and sellers trade directly. Such markets are flexible as

the trading parties can specify any contract terms they desire, but negotiating and writing

contracts is expensive. Assessing the credit worthiness of one's counter party is also

expensive and risky.

In a dealer market dealers trade for their own account and usually maintain an

inventory. Unlike the brokers in bilateral markets, the dealers buy the contract and hold it

before reselling. There is no brokerage fee, but at any point in time the dealer buys for a

price that is lower than the price he sells for. This difference is called the spread.

An exchange provides security for traders by acting as the counter party to all

trades, eliminating the risk of creditworthiness. Exchanges that utilize auctions are called

auction markets.

Pools are defined by the existence of side payments. In a pool, generators bid

their marginal cost and certain other costs and limitation; whereas an exchange uses

simple bids which express only an energy quantity and price. Pools accept some

apparently losing bids. Accepted bids that would otherwise lose money are compensated

with a "make-whole" side payment. Exchanges accept only bids that, according to their

bid-in values, at least break even. Exchanges do not make side payments. Consequently,

generators have to manipulate or "game" their bids in an exchange in some way to avoid

a loss.



When designing an electricity market, it is hard to say if the bilateral market is

absolutely better than the mediated market, or the other way around. The mediated

market, due to its high centralization, can reduce trading costs, increase competition, and

produce a publically observable price. On the other hand, the bilateral market, depending

on design and circumstances, can inhibit collusion and generally provides more flexibility

than the mediated market. Because of these characteristics of the bilateral and mediated

market, the two market types are usually applied in different submarkets. The mediated

market, for example the pool, is inherently a market for physical transactions, which are

on a short timeframe such as real-time operations. This is because the pool is inflexible,

and thus it can operate much faster than the bilateral market. In physical transactions,

speed is crucial. Catastrophes can happen in seconds and system operators often need to

exercise minute-by-minute control. Because of its speed, the pool can operate much

nearer to real-time than the bilateral market. In contrast, the bilateral market (sometimes

the less centralized exchange) is essentially forward markets for financial transactions.

This is because with less centralization there is more room to earn commissions as

brokers and to appropriate the spread as dealers. For markets of weeks and months in

advance, physical deficiencies are inconsequential, and ordinarily they are settled at the

subsequent spot price. This makes the bilateral market an obvious choice for forward

markets. Both real-time markets and forward markets are defined by the concept of

submarkets.

Submarkets

Submarkets can be classified by their spatial or temporal differences. In spatial

classification, submarkets are a collection of multiproduct markets based on the fact that

they are geographically distributed. When the transmission system is congested (or if

losses are charged for, as they should be) electricity at location A is technically a

different product from electricity at location B [12]. Consequently, an electricity market

is a multiproduct, and every product defines a submarket.

On the other hand, in temporal classification, an electricity market includes

forward markets, spot markets and ancillary market, see figure 2.1.5. Trading for the

power delivered in any particular minute begins years in advance and continues until



Real Time (RT), the actual time at which the power flows out of a generator and into a

load. All these markets, including the trade of electricity futures, except the RT market

are classified as forward markets. Electricity futures typically cover a month of power

delivered during on-peak hours and are sold up to a year or two in advance. Most

informal forward trading stops about one day prior to real time. At that point, the system

operator holds its Day-Ahead (DA) market. This is often followed by an hour-ahead

market and a RT market. The RT market is the only submarket spot market. (Though

some books use the term spot market to include DA and hour-ahead markets, this thesis

only refers to RT markets by as spot markets.) Spot markets are physical markets, while

forward markets are financial markets. This is because in spot markets all trades

correspond to actual power flows; in forward markets, the delivery of power is optional

and the seller's only real obligation is financial. In other words, if power purchased in

forward market is not delivered, the supplier must purchase replacement power or pay

liquidated damages.

Ancillary markets are submarkets that parallel with forward markets and spot

markets,. Ancillary markets provide ancillary services in support of the basic service of

generating real power and injecting it into the grid. Much more is needed to ensure that

the supply of delivered power is reliable and of high quality. Some of these services in

ancillary markets are indirect, but they are all concerned with dispatch, trade, and

delivery of power. Organized by time scale, there are five types of ancillary submarkets.

The services characterizing these submarkets are real-time balancing frequency and

voltage, transmission security, economic dispatch, trading enforcement and the black-

start capability. Among these services, economic dispatch is the only service in the time

scale of this thesis' scope. Economic dispatch refers to using the right generators in the

right amounts at the right times in order to minimized the total cost of production. We

will give more details of economic dispatch in section 2.2.

The entire market

The definition of an entire market typically includes the market participant scope,

submarkets as components, and the market type. The entire market of this thesis is

wholesale DA and RT energy-trading electricity pools. The entire market is set so as it is



a model or at least a catalyst in the United States. National policy for many years has

been, and continues to be, to foster competition in wholesale power markets. As the third

major federal law enacted in the last 30 years to embrace wholesale competition, the

Energy Policy Act of 2005 strengthened the legal framework for continuing wholesale

competition as federal policy for this country. The DA and RT markets represent forward

and spot markets. Pools are inherently RT market type and are often used in DA markets.

Under this thesis's entire market definition, the FERC standard market design

proposal describes the sequence of the energy markets' operations with the following

structure [8]:

* First, the ISO undertakes a series of pre-day-ahead procedures and out-of-market

actions to schedule generators with longer than one-day start-up or shut-down

requirements.

* Second, the ISO operates a DA market that includes an auction with "security

constrained unit commitment," which considers all the known transmission and

generation unit constraints, within the limitation of the auction optimization.

* Third, the ISO takes several actions, for example, reliability unit commitment, to

ensure reliability prior to real-time.

* Finally, in RT market, the ISO operate the power system through a power

dispatch through a security constrained economic dispatch to determine auction

market prices and supported also by physical dispatch instructions.

The bidding mechanisms in the above operations are described in section 2.3



2.2 Demand Response
Definition

During the past several decades, pressures to increase competition, reduce market power,

improve reliability, and enable the use of cleaner renewable energy technologies have led

to an increasing push for demand-side participation, in particular demand response

programs, in competitive power markets.

Demand response refers to actions by customers that change their consumption

(demand) of electric power in response to price signals, incentives, or directions from

grid operators. In this report, Commission staff adopted the definition of "demand

response" that was used by the U.S. Department of Energy (DOE) in its February 2006

report to Congress [3]:

Changes in electric usage by end-use customers from their normal

consumption patterns in response to changes in the price of electricity

over time, or to incentive payments designed to induce lower electricity

use at times of high wholesale market prices or when system reliability is

jeopardized.

This section will answer three questions on demand response: what role

does demand response play in current power system of the United States; what are

the working principles of demand response; and, what problems does demand

response bring to the United States power system.

2.2.1 Demand Response's Role in the U.S. Power Systems

Motivation

A truly functioning electricity market incorporates dynamic supply and demand forces. A

recently frequent criticism of current wholesale market designs has been that the demand-

side of the market is not active; thereby creating the potential for supplier market power.

Enabling demand-side responses as well as supply-side responses increases economic

efficiency in electricity markets and improves system reliability. For this reason, demand

response has been developed.



History

The use of demand response (DR) programs began with demand-side

management (DSM) in the 1980s and early 1990s. The emergence and increase of DSM

adoption was driven by a combination of a directive in the Public Utility Regulatory

Policies Act of 1978 (PURPA) [3], and by state and federal regulatory and policy focus

on DSM and integrated resource planning. At that time, the primary objective of most

DSM programs was to provide cost-effective energy and capacity resources to help defer

the need for new sources of power, including generating facilities, power purchases, and

transmission and distribution capacity additions. DSM only refers to energy and load-

shape modifying activities undertaken in response to utility-administered programs.

Whereas DR includes all intentional modifications to consumption patterns of electricity

of end-use customers that are intended to alter the timing, level of instantaneous demand,

or the total electricity consumption [15]. With the recognition of existing wholesale

markets' imperfection, DR becomes more important. Regulatory support and technical

advances in controls, communications, and metering led to a marked increase in

development of DR programs, such as load management, particularly direct load control

programs and interruptible/curtailable service tariffs.

Benefits

Multiple benefits can be achieved by implementing DR programs in electricity

markets:

* Reducing market power. A reduction in demand in response to a price

spike is crucial to constrain the ability of suppliers to raise prices to

inefficient levels (i.e., price levels inconsistent with consumer willingness

or ability to pay), due to the exercise of market power or other

anticompetitive behaviors.

* Maintaining resource adequacy. In markets where an "energy-only"

approach is adopted to maintain resource adequacy, demand response

may play an important role in maintaining a balance between supply and

demand. This is particularly important in light of the cyclical nature of

power plant construction activity. During the periods when a market is
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left with inadequate reserve margins, demand response can provide an

important backstop.

* Postponing long-term investment. It is sometimes argued that demand-

side resources can be used to defer or displace transmission investments

in either a regulated or a competitive market. Some encouraging programs

have been launched in California, New York, and the Pacific Northwest

region of the United States.

* Fostering reliability. Carefully crafted DR programs can be used to foster

reliability in RT system operations. High wholesale prices or participation

in programs through which loads curtail in response to instructions from

an ISO in return for some financial compensation can assist the ISO in

balancing supply and demand in RT and in managing reliability during

emergency conditions.

* Managing risk. When viewed as a call option, DR may provide a variety

of risk management benefits to an ISO or load-serving entity in a

competitive market.

In addition, short-term financial benefits in DA and RT markets are observed by

implementing DR programs. Not all consumers need to respond simultaneously for

markets to benefit by lowered overall prices. One study suggested that shifting five to

eight percent of consumption to off-peak hours and cutting another four to seven percent

of peak demand could save utilities, businesses, and customers as much as $15 billion a

year [16]. Another posited, "20 percent of customers account for 80 percent of price

response." Others find that "only a fraction of all customers, perhaps as few as five

percent, are needed to discipline electricity market prices." [17] In its comments to the

Commission, the Demand Response and Advanced Metering Coalition (DRAM) said it

"believes that demand response typically is capable of providing demand reductions of 3-

5 percent of annual peak load for periods up to 100 hours or so per year." In California's

statewide pricing pilot, 80 percent of load reduction came from 30 percent of customers

[18].



Current status

Currently in the United States, there are regional differences in the use of demand

response and how its use has changed over the past decade. Data collected from regional

reliability councils and electric utilities by North American Electric Reliability Council

(NERC) in its Energy Supply & Demand database provides a snapshot of regional

potential and historical trends. Fig. 2.2.1 illustrates that Florida Reliability Coordinating

Council (FRCC), Electric Reliability Council of Texas, Inc. (ERCOT), and the

MidAmerican Power Pool (MAPP) had the largest percentage of demand response

capability in 1998. It also shows that the amount of load management included in

regional forecasts declined between 1998 and 2003. Regions with larger relative declines

include ERCOT, Northeast Power Coordinating Council (NPCC), Mid-Atlantic Area

Council (MAAC), and Western Systems Coordinating Council (WSCC). In 2003, due to

the decline in capability in ERCOT and an increase in capability in Mid-America

Interconnected Network (MAIN), the regions with the largest percentage capability are

FRCC, MAIN, and MAPP [3].

Interuptlble and Direct Load Control by NERC Region
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w I. z . o

w

Fig. 2.2.1 Source: Data from NERC 1998 and 2003 summer assessments. NPCC* data

is for 1998 and 2002 [15]



According to the literature on this issue, a contributing factor behind the decline

shown in Figure 2.2.1 has been the waning of electric utility interest and investment in

demand response over the past decade, due to changes in industry structure and the result

of state electric restructuring plans. State and utility programs were dismantled in many

restructured states that had previously supported extensive programs. In several states,

such as Texas, load management was deemed a competitive service and regulated

distribution companies were directed to divest their holdings [10]. In other states, utility

divestiture of generation or transfer of the provider-of-last-resort (POLR) obligation

removed a significant driver for utility investment by splitting up the benefits of demand

response across multiple parties. Ample capacity reserves in many parts of the United

States also contributed to declining utility interest and investment. Many states, such as

Nevada, still support demand response and load management and operate integrated

resource-planning programs that frequently include demand response and energy

efficiency.

2.2.2 Demand Response's Working Principles
Classification

There are two primary categories of demand response: incentive-based demand response

and time-based rates. Each category includes several major options:

* Incentive-based demand response

o Direct load control

o Interruptible/curtailable rates

o Demand bidding/buyback programs

o Emergency demand response programs

o Capacity market programs

o Ancillary-services market programs

* Time-based rates

o Time-of-use

o Critical-peak pricing

o Real-time pricing



Incentive-based demand response programs offer payments for customers to

reduce their electricity usage during periods of system need or stress. By adjusting or

curtailing a production process, shifting load to off-peak periods, or running on-site

distributed generation, customers can reduce the level of demand that they place on

distribution networks and the electric grid. Customers who participate in incentive-based

demand response programs either receive discounted retail rates or separate incentive

payments. At a wholesale level, the impetus comes from independent system operators

(ISOs) or regional transmission organizations (RTOs) and power marketers. These

programs can be triggered either for reliability or economic reasons. In the wholesale

demand response programs, customer load reductions are aggregated by retailers, and

then provided to the wholesale provider, such as an ISO, in exchange for an incentive.

The second type of demand response is comprised of time-based rates. A range of

time-based rates are currently offered directly to retail customers; not all are time-varying,

but they may promote customer demand response based on price signals. These are

different from flat rates, which are unvarying and offer no price signals. Customer

demand response, incentivized by time-varying price signals, is one way for electricity

customers to move away from flat or averaged pricing and to promote more efficient

markets.

Working principles

Both the incentive-based DR programs and time-based rates take effect through

increasing elasticity of demand side by exposing end-users to incentives or time-varying

pricing. Fig. 2.2.2 illustrates how this principle works and achieves the benefit of

wholesale price reduction. Because generation cost increases exponentially near

maximum generation capacity, a small reduction in demand will result in a big reduction

in generation cost and in turn a reduction in price of electricity. In this example, the

original demand curve is represented by a vertical line because it is assumed that the

system is without DR programs. DR programs induce a negative slope on the original

demand curve leading to small deduction in demand and a huge reduction in price.
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Fig. 2.2.2 a simplified illustration on how DR works by increasing demand elasticity

The two categories of demand response are highly interconnected and the various

programs under each category can be designed to achieve complementary goals. For

example, by adjusting customer load patterns or increasing price responsiveness, large-

scale implementation of time-based rates can reduce the severity or frequency of price

spikes and reserve shortages, thereby reducing the potential need for incentive-based

programs. Care needs to be taken in their implementation to ensure that these programs

do not work at cross-purposes.

The effect of either time-based rates or incentive-based demand response or

incentive-based demand response on electricity sub-markets depends on the timeframe of

the response. For example, real-time pricing or critical-peak pricing, which directly

reflect wholesale prices, affect supply scheduling in day-ahead markets and during real-

time dispatch. Time-of-use rates do not induce as rapid or as large of response. Incentive-

based demand resources such as direct load control, can be used in ancillary markets, or

as capacity resources in system planning.

The crux of demand response that this definition addresses is that it is an active

response to prices or incentive payments. The changes in electricity use are designed to

be short-term in nature, centered on critical hours during a day or year when demand is

high or when reserve margins are low. Customer responses to high market prices can

reduce consumption; this can shave wholesale market prices on a regular basis and



thereby dampen the severity of price spikes in wholesale markets on extreme days.

Customer response to incentives is an important tool available to operators of the electric

grid to address reserve shortages, or retailers incorporate in their portfolios to match

customer demand with available supply, and where available to individual customers to

better manage their costs of doing business.

If changes in electricity prices last for a long time or are expected to do so, a

longer-term price-based reduction in consumption through change in customer behavior

may occur. Energy efficiency and conservation are often achieved while consumers are

involved in demand response programs through actions taken by consumers to conserve

their consumption of electricity during high price periods as they become more aware of

their energy-usage patterns.

2.2.3 Demand Response's Problems and Challenges in the U.S.

Power Systems

Although the emergence of demand response brings about more flexibility and options

for both the supply and demand side, they also can introduce some complications into the

operation of power systems. In the absence of a priority pricing scheme, where the prices

at which load will curtail are announced to the market, the ISO may have difficulty

understanding the slope or elasticity of the market's aggregate demand curve in a RT

energy market. ISOs sometimes complain that demand response affects the accuracy of

their near-term forecasts of demand, thus complicating the task of balancing demand and

supply in real-time. If more generation is scheduled than needed, additional costs may be

imposed upon the market [19, 20].

Thus, with demand response, in short-term power system operations, ISOs may

find it harder to predict the future demand and commit or dispatch the correct amount of

generation when there is an active demand response; while in long-term planning,

planners may have difficulties deciding the needed generation and transmission capacity

for load forecasts that include both short and long-term price elasticity of demand [16,

17].

On the other hand, successful demand response requires a correct combination of

customer characteristics, economic incentives, metering and communications technology,



policy support and most importantly market design. Existing market designs raise

problems before and after the implementation of demand response programs: design and

implementation of demand response programs can be more complicated due to lack of

information in forward market; further difficulties arise in price settlement when the

auction systems in DA and RT markets and demand pricing are designed independently

[21].

In order for demand response programs to result in increased market efficiency,

and not simply create additional uncertainty, it is critical that information regarding load

behavior is provided to the market administrator and incorporated into the appropriate

market price [22]. For this reason, demand-side bidding in day-ahead or real-time

markets may have greater potential to increase efficiency than relying solely on a more

passive demand response, where loads simply respond to real-time or forecasted prices.



2.3 Existing bidding mechanisms
All auctions solve some mathematical problems. Bids are submitted, some function of the

bids is maximized or minimized, and the solution determines which bids are accepted.

For example, say bids are submitted for the purchase of 100 candy bars. Each bid states a

number of candy bars and a price. The auction problem may be to maximize the sum of

the amount paid by each winning bid. The solution defines a set of accepted bids. There

is one more step: settlement. The winners must pay and must receive the candy bars

being auctioned.

The designs of auctions are called bidding mechanism. In auction theory, each

bidding mechanism is specified by three sets of conditions: bidding rules, bidding

acceptance rules, and settlement rules [10]. Bidding rules defines bidding participants,

bids' content, and specific operation criteria. Restrictions on bidding have important

consequences for the acceptance problem, and for market efficiency. Bid acceptance and

price determination are usually lumped together because they are computed together,

although conceptually they are distinct. On the other hand, settlement is not determined

entirely by the solution to the acceptance problem but also uses separate price-

determination rules, such as including penalties for noncompliance with commitments

made in the auction. In our "candy bar" example, the settlement rules could specify that

each accepted bid would pay as bid and receive the number of candy bars for, or it might

specify that accepted bids would pay a price per candy bar equal to the lowest price per

candy bar of any accepted bid.

Day-ahead (DA) and Real-Time (RT) markets run by Independent System

Operators (ISO) that take the form of pools are operated as auctions. This section will

focus on the bidding mechanisms of DA and RT auctions. Section 2.3.1 describes a

typical bidding mechanism in DA markets. Section 2.3.2 presents alternative bidding

mechanisms in DA markets. Bidding mechanisms in RT markets are given in section

2.3.3.



2.3.1 Auctions in Day-Ahead Pool Electricity Markets

Procedure

The description of DA markets often focuses on presenting an auction problem. The

auction problem takes place in three stages,

1. Bids are submitted.

2. Some bids are accepted and prices are determined.

3. Accepted bids are settled at the determined prices.

A general bidding rule

Corresponding to these three stages, in auction theory, each bidding mechanism is

specified by three sets of conditions: bidding rules, bidding acceptance rules, and

settlement rules. In a DA pool, the bidding rules typically define the auction as sealed-bid

with multipart bids. Suppliers submit bids prior to a trading deadline (usually the prior

morning for the day-ahead and about 1 hour before the real-time market). These bids

must usually takes the form of equation (1) [10]

BG(P) = < Pmax(t), Pmin(t), C(P), Cst, Cfix, Prpu, Prpd, ton, toff, z > , (1)

where

BG(P) bid submitted by supplier S with power profile P;

Pmax(t) maximum MW available at hour t;

Pmin (t) minimum MW at hour t if the generator selected online;

C(P) cost function ($/MWh) over the range of available output;

Cst start up cost of the generation unit ($);

Cfix fix cost of the generation unit ($);

Prpu ramp-up limit of the generation unit (MW/h);

Prpd ramp-down limit of the generation unit (MW/h);

ton minimum up time of the generation unit (h);

toff minimum down time of the generation unit (h);

z other bids or constrains of the generation unit, such as

reactive power.



A general auction formulation

After receiving the bids from suppliers, ISO conducts "security constrained unit

commitment," in which "security" enforces the balance between supply and demand in

the system (and probably on every node of the system). The unit commitment specifies

exactly which generation units should be turned on in each hour, their level of output, and

the length of time they should run over the day, based on start-up and energy bid prices

and the other financial and physical parameters and transmission network constraints.

Thus in a DA pool, bidding rules require a multipart bid from one generator per day to

conduct unit commitment. On the contrary, in exchange markets, bidding rules require 24

hourly bids of one generator containing only energy quantity and prices. Moreover, in

exchanges instead of unit commitment economic dispatch is performed, which can be

formulated as a linear programming problem.

Mathematically, the security constrained unit commitment is done by solving a

mixed-integer optimization problem with the objective of minimizing total generation

cost as defined by the bids. A general form is shown in (2) [10],

NG T

min Ci (Pi (t), ui (t)), Vj e g, i eD
j t

s.t. L (P(t),uJ(t),Pi(t)) = 0, Vt

G (Pi(t), ui(t)) < O, Vj, t

Zk (Pi(t), uJ(t), Pi(t)) < O, Vt

where g set of generation units;

D set of load units;

NG number of generation units in set g, = 191;

T transaction time horizon of DA markets;

PJ (t) active power of generation unit j at hour t;

P'(t) active power of end user i at hour t;

u) (t) unit commitment variable of generation unit j at hour t,



1, if committed
-0, if decommitted

ui(t) and PJ(t) are decision variables for generation unit j's commitment and active

power output at hour t. P'(t) is a parameter of ISO forecasting on load unit i at hour t.

The objective function min NG ETc j (j(t),u(t)),Vj E ,i E D states by

choosing uJ(t) and Pi(t) to minimize the total generation cost of NG units during T,

which is a typical form in demand bundled bidding mechanisms. Alternative forms of the

objective function are applied under various bidding acceptance rules.

Constraint L (pi (t), ui (t), Pi (t)) = 0, Vt imposes system balance condition

between electricity generation and load. The specific forms of this constraint depend on

settlement rules of the bidding mechanisms in DA markets.

Constraint G (Pi (t), ui(t)) 5 0, Vj, t is a general form of generation unit j's limits.

In practice, such constraint may be maximum and minimum power output, ramp-up and

ramp-down limits, least online and offline time. The specific forms of this constraint

depend on the bidding rules of bidding mechanisms in DA markets.

Constraint Zk (i(t), ui(t), Pi(t)) 50,Vt is a general form of transmission

network limits. Depending on the accuracy requirement and ISO's computation

capability, this constraint can be nonlinear or approximated to linear. Under some

specific settlement rules, say uniform payment, this constraint can be ignored [11]

By observing the above general formulation, we conclude that the three sets of

conditions of a bidding mechanism define different parts of the unit commitment

optimization problem. Bidding rules define the decision variables, parameters, and

generation operation constraints, bidding acceptance rules define the objective function to

optimize, price settlement rules formulate the other constraints that the objective function

is subject to. Based on this conclusion, we will further discuss the alternative bidding

mechanisms in DA markets by looking at their optimization formulations in the next

section.



2.2.2 Alternative bidding mechanisms in DA markets
Alternative bidding mechanisms characterized by their three sets of conditions exist in

DA markets. By looking at their bidding rules, bidding acceptance rules and price

settlement rules, we exam these bidding mechanisms in this section.

Bidding rules

In a DA pool, the bidding rules require that suppliers submit multipart bids taking

the form of (1). These bids must specify the minimum and maximum MW that can be

produced by the generator, the price of energy ($/MW) over the range of its available

output, a start-up cost ($), a no-load cost ($), and a number of physical characteristics,

such as how rapidly the generator can increase or decrease output (called the "ramp rate"

and measured in MW/hour). Markets with a bidding mechanism of which bidding rules

require bids only from supply side is called demand bundled markets, such as presented

in the general form (2). Demand bundled markets have multiple disadvantages as stated

in section 2.2. To overcome these disadvantages, several demand unbundled bidding

mechanisms have been developed in recent years [10].

Emergency Demand-Side Bidding (EDSB) programs are a bidding mechanism

that allows participation from the demand side. This kind of programs is designed to

reduce power usage through the voluntary shutting down of businesses and large power

users. Usually, bidding rules in this bidding mechanism require demand bids stating the

MW they will reduce and the price of reduction ($/MW). Companies, mostly industrial

and commercial, sign up to take part in the programs. Once an emergency happens in real

time, the ISO calls the accepted demand bids in DA markets. This action realizes the

financial bids into physical load reduction. Payments are made based on the demand bids'

real-time performance and real-time market prices. A practical example of this bidding

mechanism is the NYISO's Day-Ahead Demand Response Program (DADRP). DADRP

allows energy users to bid their load reductions, or "negawatts", into the Day-Ahead

energy market as generators do. Offers determined to be economic are paid at the market

clearing price [8].

Another demand unbundled bidding mechanism implements the opposite concept

of the emergency demand-side bidding programs. In wholesale competition stage of



electricity market deregulation, retailers representing demand side are allowed to

participate in market transactions. Thus, in DA markets, bidding rules require retailers,

instead of submitting the energy to reduce in the 24 hours, to submit bids with MW to

consume, denoted in (3),

BD(P,t) = < P(t),p(P,t) >,

where BD (P, t) bids submitted by retailer D with consumption

profile P and hour t;

P(t) consumption active power profile (MW);

p(P,t) price function on power P and hour t (MW/$);

p(P,t) is a function that depends on both power, P, and consumption hour, t, which is due

to the reason that consumer utility of electricity is sensitive to t.

This bidding rule is raised in FECR's Standard Market Design Proposal (2006),

and is the current implemented bidding rule in wholesale competitive markets. Notice

that comparing to suppliers' bids, BG(P), retailers' bids take the form of BD(P,t). In

other words, in DA markets, suppliers submits one bid for the next 24 hours, while

retailers submit 24 single bids for the next day. For this reason, this bidding mechanism is

also called single hourly bid (SHB).

The existing EDSB and SHB have several deficiencies. Firstly, in wholesale

competitive markets, forecasting day-head demand rather than allowing retailer-

participating auction will inhibit market equilibrium's allocation and consequently cause

inefficient market operation. Secondly, EDSB limits demand-side participation to

emergency demand response programs. Many other demand response programs with the

objective of system adjustment, such as real-time pricing programs, are left out in

EDSB's design. Thirdly, SHB ignores loads' operation constraints and inter-temporal

shiftability. In other words, the energy consumption of one hour may affect the energy

consumption of the other 23 hours. For example, some loads need continuous operation,

thus their power consumption at a certain hour is coupled with the nearby hours. In



addition, for SHB, previous works shows that allowing 24 hourly bids instead of a single

bid for the day can increase market power [10].

To improve the stated deficiencies, Su and Kirschen [21] propose a demand-side

bidding mechanism considering regular inter-temporal demand response. The bidding

rules of this bidding mechanism takes the form shown in (4)

BD(P) = < P (t), p (P, t), Prp, Emax, >, (4)

where BD(P) bids submitted by retailer D with consumption

profile P;

P(t) consumption active power profile (MW);

p(P,t) price function on power P and hour t (MW/$);

Prp load ramp rate (MW/h);

Emax maximum energy of loads under retailer D to consume

over the next 24 hours (MW-h).

BD(P) represents one bid for the 24 hours instead of 24 bids in SHB. Prp and Emax

impose inter-temporal constraints on loads consumption. However, these constraints only

describe the load shifting within the close hours rather cross the whole auction period. In

addition, the information required from demand bids is usually too discrete to estimate. If

there are 500 different loads under a retailer, BD(t) will have a huge size.

Bidding acceptance rules

Bidding acceptance rules define the objective function of the unit commitment

problem. In demand bundled DA markets, the bidding acceptance rule is to minimize the

total generation cost over the next 24 hours. Under the bidding rules stated in section

2.3.1, the generation cost is the sum of electricity production cost, no-load cost and start-

up cost. In demand unbundled DA markets, the same bidding acceptance rules apply to

EDSB, since the emergency responding loads can be perceived as generation units. Thus

the acceptance rule of EDSB is to minimize the total of generation and emergency

responding demand. For SHB and other regular demand-side participation bidding
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mechanisms in wholesale competitive markets, the auctions will maximize actual total

surplus [23].

Price Supply

Net
Consumer Demand
Surplus

Producer
Surplus

Production costs Q* Quantity

Fig. 2.3.1: Net consumer surplus, producer surplus and social welfare in market
transactions.

Total surplus is the sum of (net) consumer and producer surplus, and it is also the gross

consumer surplus minus production costs. Inheriting the notations of general form (2), the

objective is max t(Ei pi(P(t)) - Ej C(P(t))). From Fig. 2.3.1, we can observe that in

an unconstrained system, total surplus can be maximized by turning the demand bids into

a demand curve and the supply bids into a supply curve and finding the point of

intersection (P*, Q*), which is called a market equilibrium. Under a market equilibrium,

both the supplier and demand reach a stable status. This gives both the market price and a

complete list of the accepted supply and demand bids. Unfortunately, transmission

constraints and constraints on generation output and load consumption (as in (1) and (2))

can make this selection of bids infeasible. In this case it is necessary to try other

selections until a set of bids is found that maximizes total surplus and is feasible.



Settlement rules

Bidding acceptance rules determines what bids are accepted, or partially accepted,

and this is determined through simple accounting of the quantities bought and sold. Prices

are determined by a separated set of settlement rules. Since forward markets are only

financially effective, prices determined in these markets are not the final prices if

considering spot markets. The payments that generation units receive depend on their

real-time physical output in addition to the amount received in the DA market. For this

reason, settlement rules in DA markets only partially determine suppliers' payments. In

addition, we make the assumption that market equilibriums can be found for simplicity.

In this case, the buying prices and selling prices are identical for the generation units and

retailers at the same time and location.

A most fundamental type of settlement rules is uniform payment. Market prices

are set by specifying the balance condition in (2) as total generation output equals to total

load consumption as (5)

Zi P (t) - i P'(t) = 0,Vt E T, je g,i E D. (5)

Applying the Karush-Kuhn- Tucker (KKT) conditions to the obtained problem (2), we

get the dual variable associated with (5) at the optimum as the price vector of all

generation units. The price vector has all its entries of the same value, commonly denoted

as X. The physical meaning of X is the system's marginal generation cost, meaning the

total generation cost ($) raised by increasing one MW demand.

Uniform payment is feasible only when the transmission network has sufficient

capacity. However, congestion prohibits low-cost generation units from supplying loads

on the other end of congested transmission lines, and makes uniform payment unfair [12].

To solve this problem, nodal pricing is developed. In addition to (5), transmission

constraints (6) are imposed.



SP(t)- Pi(t) Pb,n(t) = 0 Vt E T, Vb E 3, Vb, nEN (6)
jEgb iED b  n

Smna x < Pb,n(t) < PDmax, Vb, n E 3X, Vt E T,

where 3 set of indices of network buses;

N set of indices of transmission lines;

gb set of generation units at bus b;

Db set of loads at bus b;

Pb,n (t) power transmit from bus b to bus n (MW);

PbmnaX(t) transmission capacity from bus b to bus n (MW);

Pb,n(t) is defined by other parameters of the transmission system and its physical

condition, which are not stated here.

Applying the KKT to the obtained problem (2), we get the sum of dual variables

associating with (5) and (6) in optimum as the price vector of all generation units. The

price vector's entries are composed of system marginal cost X and the dual variable of (6),

commonly denoted as jIb. The physical meaning of X plus 11b is system's nodal marginal

generation cost, meaning the total generation cost ($) raised by increasing one MW

demand at node b.

Further improvements can be made on nodal pricing, if we consider the

transmission losses in price settlement. Rewrite (5) as (7),

Zj PJ(t) - i P'(t) - n,b Prb(t) = 0, Vt E T,j E g,i E D, n, b E (7)

where Pbn(t) is the transmission losses from bus b to bus n. Pb n(t) is defined by other

parameters of transmission system and physical condition, which are not stated here.

Applying KKT condition to the optimization problem with (7), we derive a price vector

from the sum of dual variables of (6) and (7). The obtained dual variables associating

with (7) are composed of system X and a losses cost term, while the dual variables of (7)



remain as lb. The prices' physical meaning is system's nodal marginal cost under

transmission losses.

In practice, a centralized pool market uses "make-whole" side payments to, in

effect, pay different prices to different suppliers at the same time and location. These

payments are only made when an accepted supplier would lose money at its as-bid costs

given the pool price. In other words, the price paid to the a generation unit in a DA pool

equals to any of the above price plus a side payment covering its commitment lost [12].

The mentioned three settlement rules are ante post price settlement, which

partially determine price before dispatch. Other type of settlement rules, such as ex post

price settlement, will be discussed in the next section.

2.3.3 Settlement Rules in Real-Time Markets

The RT market is a physical market, as all trades correspond to actual power flows.

Unlike a DA pool, a RT pool cannot use bids for lack of transaction time. Though not

holding auctions, RT markets determine RT prices and final payments for suppliers. In

other words, price settlements of RT and DA markets together define settlement rules of

a bidding mechanism of the two markets. For this reason, price settlement in RT markets

can be thought as the second stage of its corresponding DA bidding mechanism.

Price settlement in RT markets is ex post pricing, meaning price determined after

power generation. As forward markets, DA markets can be financially effective or

ineffective. Based on this criterion, RT settlements generally fall into two types: two-

settlement system and post-settlement system.

Two-settlement system

The concept of two-settlement system is to establish penalties for noncompliance

with commitments made in the DA auction. Under two-settlement system, an RT pool

works like a classical Walrasian auction: a price is announced and suppliers and

consumers respond. In a RT market, trades are not under contract: power that just shows

up, or is taken, in real time and suppliers or retailers accept the spot price. The difference

is that in a power market trading takes place all the time; there is no waiting to trade until

the right price is discovered. The RT price is determined by total actual (RT) supply and



demand. ISOs adjust the output of already committed units on a 5-15 minute basis [10].

The adjustment procedure usually involves multiple ancillary markets, and finally settle

at an RT price po. If a supplier sells P1 to the ISO in the DA market for a price of p, and

then delivers Po to the RT market, it will be paid:

Supplier is paid: P1 x (p, - Po) + P0 x Po . (8)

The incentive of this settlement rule are revealed by (8). When real time arrives, p, and

P, have been determined in the DA market. Assuming the market is competitive,

suppliers will also take po as given, so by real time, the entire first term will be viewed as

a "sunk" cost or an assured revenue. This leaves the second term as the only one that can

provide an RT incentive for generator behavior, and this term pays the generator the RT

price for every MW produced. Consequently the generator will behave exactly as if it is

selling all of its product in the RT market. This can be proven by considering the

supplier's profit, which is revenue minus cost, and the profit it would have had if it traded

only in the RT market. Consider a simple illustration: suppose more power is needed and

there is a generator with a DA contract and a marginal cost of $65/MWh while the RT

price is $60/MWh. In a competitive pool, that generator would not produce even if it had

sold its power in the DA market. It would earn more by buying RT replacement power

than by generating.

Post settlement system

Post-settlement system uses another concept: penalties for noncompliance with

the optimal generation point in the RT market. In the RT market, no price signals or

generation instructions are given from the ISO under this settlement system. If generation

unit j is measured as delivering Po to the RT market afterwards, the ISO formulates an

optimization problem shown as (9)

min Z Cj(PJ) , Vj E g (9)

s.t. (P - PJ) = 0



Zk (Pi, PO ) 5 0, Vj E g

0 5 P _< Po + E,Vj E g,

where E is a small positive number.

Constraint ZI(Pi - Pg) = 0 is the transformed balance condition; Constraints

Zk(P j, P ) 5 0, Vj e 9 are the transformed network limits; The last constraints, 0 5 Pi _

Po + E, Vj E g, are the limits on deviation of the optimal generation point. The solution to

(9) is considered as the optimal generation point that minimizes the total generation cost

during the concerned real-time period. Dual variable of the balance condition under the

optimal solution is the final price that suppliers will receive. The physical meaning of the

settled prices is the marginal cost of deviation from the optimal generation point.

Under post-settlement system, DA auctions only select the units to commitment in

the next 24 hours, but bids are financially ineffective. RT markets adopting this

settlement rule are good examples that decouple bidding acceptance rules and settlement

rules in a bidding mechanism. This settlement rule is currently only applied to supply

side in RT markets. In other words, demand deviation from the optimal operation point

will not cause any penalties.

The RT price should be set by taking into account the full supply and demand

response. If this is not done, it will be necessary for the system operator to circumvent the

market in some way to balance supply and demand.
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Chapter 3

A Demand Responsive Bidding
Mechanism with Price Elasticity Matrix

The emergence of Demand Response (DR) programs brings about more flexibility and

options for both the supply and demand side. However, they also increase the

uncertainties of power systems in short-term operation and in long-term planning.

Moreover, the power systems, which are operated and planned without considering DR

programs, also bring inaccuracies to the design and implementations of DR programs.

In order to get information of DR into electricity markets, some previous works

proposed bidding mechanisms that allow demand-side participation [5, 21]. However,

these bidding mechanisms cover only a limited form of demand response (demand-side

bid in emergency market), and fail to exploit the full potential of demand-side resources.

This thesis addresses this challenge by proposing a new demand-side bidding mechanism,

in which demand-side participation is modeled with Price Elasticity Matrices (PEM) [24].

This feature allows the demand-side participant to specify inter-temporal constraints,

which is not possible under current demand-side bidding mechanisms.

For illustration simplicity, this thesis presents the proposed demand responsive

bidding mechanism under the entire market of a wholesale DA and RT energy-trading

electricity pool. In this thesis, the DA market is hourly-based and its auction period is 24

hours; the auction period of the RT market is 5 minutes. With a few modifications, the

proposed bidding mechanism can be applied to an extensive scope of wholesale

competitive markets.

This chapter gives the theoretic part and main mathematical conclusions of the

proposed demand responsive bidding mechanism. Section 3.1 and Section 3.2 describes

the bidding mechanism in terms of the three sets of conditions: bidding rules, bidding

acceptance rules and settlement rules. Section 3.3 addresses specific issues on PEM.

Section 3.4 gives the algorithms of operation the proposed bidding mechanism.



3.1 The bidding rules

The bidding rules of the proposed bidding mechanism have the same general frame of

traditional DA auction. It adopts general bidding chronologically and requires sealed

multipart bids. Moreover, the supplier's bid profile takes the same form of (1) in the

proposed bidding mechanism [23].

BG(P) = < Pmax(t), Pmin(t), C(P), Cst, Cnld, Prpu, Prpd, ton, toff, Z > , (1)

The differences between traditional bidding mechanisms and the proposed

demand responsive bidding mechanism exist in retailers' bid profile, presented in (10).

BD (P, ETxT) = < P(t),Pref(t), Pref(t), Pmax(t), Pmin(t), ETxT > (10)

BD(P, ETXT)

Po(t)

Pref(t)

Pref (t)

Pmax(t)

Pmin(t)

ETxT

bids submitted by retailer D with consumption profile P

and PEM ETXT ;

initial value of consumption active power at t (MW);

reference consumption active power at hour t (MW);

reference selling price of retailer D at hour t ($/MWh);

maximum consumption active power at hour t (MW);

maximum consumption active power at hour t (MW);

PEM of retailer D within a timeframe of length T.

Profile (10) essentially approximates a multi-dimensional demand curve, which states the

self price-demand relation as well as cross price-demand relation. Two key assumptions

are required for this approximation. They are

* the total consumption quantity submitted by the retailer is much larger than the

consumption pattern of each load. Without this assumption, the demand curve is

constructed by energy blocks, and thus is not continuous and differentiable;

* the demand curve can be linearized around the reference points of price and

demand.

where



Figure 3.1.1 illustrates (10) on a two-dimensional demand curve of a single hour t. The

linear demand curve, P(p(t)), can be described by its slope, e, and a reference point on

the curve, (Pref(t), Pref(t)) as in (11),

P(t) - Pref(t) = E(p(t) - Pref(t)) (11)

where the slope E = . The reference points can be any known points on the demand
dp(t)

curve. The two limits, Pmax (t) and Pmin (t) specify the feasible region of the demand

curve. When the proposed bidding mechanism is applied to multiple retailers over T

hours, equation (11) will be calculated for iterations to search for the market equilibrium.

(The detailed algorithm is introduced in Section 3.4.) For this reason, an initial point

Po(t) is submitted for the searching. The value of this initial point won't affect the final

market equilibrium. However, depending on the searching algorithm, the selection of

Po(t) will affect the convergence time and even other searching performances.

Quantily
P(t) Supply

Pmc(t) C_- ~ P(P()

-P,p) ,

Po(t

Pmin(t) ......

Price p(t)

Fig. 3.1.1 Searching for the market equilibrium with elasticity, reference points and
operation limits.



For demand curves over several hours, T, the slope e changes from a scalar to a

price elasticity matrix, ETxT, where T is the PEM's dimension. The time period of interest,

T, depends on the purpose of the analysis and could be determined by the market

structure or the generation forecasting capability. Since this thesis presents the bidding

mechanism in an hourly-based DA market, T is set as 24. The PEM's elements is defined

in (12)

aPt/Pt
EtT = , (12)

where Pt is the quantity of electricity consumed in hour t, and p, is the price during hour

T. When perturbations are small, Pt/P, can be linearized around a fixed reference value,

and the normalized elasticity is simply the partial derivative of the electricity demand

with respect to the hourly price. The normalized price elasticity is,

aPt
EtT = , (14)

When t = z in (14), the elasticity is defined as the own-elasticity, representing a

demand change in response to a price change in the time period; when t # r, the

elasticity is defined as the cross-elasticity, representing a demand change due to a price

variation over any other time period. A vector representation can be used to calculate the

total demand deviation over a certain time period:

AP = ETxTAp

AP1  -E11  E11  - E1T [Ap1SAP2  E21  22 - CT AP2 (

APT, ET1 ET2 ETT -APT]

where AP = Pt - Pref,t and Apt = Pt - Pref,t-



As shown in (15), the PEM treats the electricity of all time-periods as products

that substitute or complement each other. Compared to the bids of traditional bidding

mechanisms, (10) requires only one bid instead of 24 single bids and extends demand

curve to the inter-temporal dimension. Compared Su and Kirschen's bidding mechanism

[21], which investigates into specific load operation limits, the PEM models inter-

temporal load shifting in a compact way. In addition, inter-temporal constraints either

from demand side, such as end-users' shifting habits, or from system side, such as DR

programs' types, can also be described by the PEM. Section 3.3 will describes in detail

the attributes, forms and estimations of the PEM.

Sometimes a retailer (or load aggregator) need to construct one or multiple PEMs

for a single or multiple groups of customers. The reason for not aggregating all the PEMs

into one is to retain the each customer group's capacity information, Pmax (t) and Pmin (t).

Thus, a retailer can classify the loads by end-user shifting types according to a unique

PEM. The collection of these PEMs represents the overall end-user load shifting under

this retailer. Section 3.4 will give more detail on this occasion.



3.2 Bidding Acceptance Rules and Settlement Rules

This section will discuss the bidding acceptance rules and price settlement under the

proposed bidding mechar ism in DA markets. The complementary price settlement rules

in RT markets require PIEM's transformation, and will be discussed in section 3.3. As

stated in section 2.3, bid :ing acceptance rules and price settlement are separated rules

and has different functio : bidding acceptance rules define the objective function in a

bidding process, while pr :e settlement determines the bidders' final payment. However,

in practice, these two se.:; of conditions are usually lumped together, because they are

computed by solving the ame problem. This is also true in DA market auctions under the

proposed bidding mechan ism.

This section forr alates the two sets of conditions based on different DR programs.

Section 3.2.1 gives the )idding acceptance rules and price settlement under traditional

bidding mechanisms. '!he formulation in Section 3.2.1 is originally developed by

Schweppe [11], and is ,extended in this thesis by adding inter-temporal generation

constraints. Based on tI s basic formulation structure, Section 3.2.2 develops the two sets

of conditions under l!te proposed bidding mechanisms. The obtained optimal price

structures are comparc l to the one in Section 3.2.1. Section 3.3.3 further points out the

market equilibrium uider the proposed bidding mechanism. Moreover, it gives a brief

overview on sensitiv :y analysis of power system contingencies under the proposed

bidding mechanism.

3.2.1 Under Traciitional Bidding Mechanism

In Section 2.3, we firmulate the existing major bidding mechanisms in DA electricity

markets as optimization problems. Bidding acceptance rules are formulated into the

objective function co' the optimization problem, and price settlement rules are specified

by the problem's cc: istraints. In this section, we will show how the bids are accepted and

how the optimal price is settled by solving such an optimization problem. This

mathematical demonstration is previously done by several works [4, 13, 25, 26] under

different bidding acceptance rules and price settlement conditions. A most

comprehensive one is the spot pricing structure developed by Schweppe [12]. However,

this pricing structure is solved as a single-period "deterministic" model, which assumes



inter-temporal independencies. After the spot pricing was developed, Motto [27]

proposed a multi-period auction, which takes the generation inter-temporal constraints

into account. Though a closed-form solution of the optimal price is developed in

Arroyo's work, the pricing structure is not observable due to integer variables being

involved. In this section, we present a general optimization problem for the traditional

bidding mechanisms bases on Schweppes' work. Inter-temporal generation constraints

are added to this formulation. In this thesis, we assume the formulation does not contain

any binary variables, which indicate generation units' commitment.states. Assuming bids

are submitted according to the traditional bidding rules shown in (1), we formulate the

problem as following:

Generation

There are ] generation units on the supply side. Let Yj (t)be output from unit j at

hour t, a decision variable. Unit j has maximum output Pmax (t) = K, minimum output

Pmin(t) = 0, and marginal generating cost acj( () F
aY1 (t) - . For convenience, units are

numbered in order of operating costs, i.e. , 1 _ A<12, .. ,j. Then the decision variable

Yj(t) satisfy:

0 < Y (t) < Kj Vj e j (16)

In addition, unit j has multiple inter-temporal operation limits, which are described by

Prpu , Prpd ton, toff in (1). These limits are modeled by:

Y = < Yj, ,...,Yj,m > Vj E, me Mv (17).

where m is the number of limits, and Mj is the set of inter-temporal limits of unit j. Each

limit m depends on the operation status across the whole timeframe T, and Yj,m =

Yj,m (Y(1), ..., Y(T)). In practice, Yj,m may only depend on several sequential hours of

T.



Demand

Since the market is wholesale competitive, the demand-side acting entities are

retailers. Individual end users act independently. Their demands depend on time of day,

weather, the price of electricity of current time, the price of other inputs, but independent

of price and electricity use at other hours across the auction period. A critical step is that

we shall model end users as price-taking expected profit-maximizing firms. Let Fi be the

short-run value-added function end user i's use of electricity. Thus, it is i's profit, minus

the cost of all non-electricity variable inputs. It depends on the end user's electricity use

Di(t) and other random variables (which are ignored here for simplicity). Thus Fi =

Fi (Di (t)), and the end user will choose Di (t) to maximize its profit:

max: profit for i = Fi(Di(t)) - pi(t)Di(t) (18)

aFi(Di (t)) = P(t) (19)
= pi(t) (19)SD! (t)

where D~ (t) is the optimal use of electricity that maximizes its profit. Equation (19)

implies Di (t) = Di (pi (t)) because of end-user profit maximization. In other words, for

price-taking expected profit-maximizing end users, their demand curve Di (pi (t)) gives

their optimal electricity use under every given selling market price.

Transmission

A complete characterization of the network at hour t requires that we know the

flows and losses along each line, and the net injections or withdrawals at each node.

These are related by a number of equations, which are discussed in detail by Schweppe

[11].

Let the flows along each line at hour t be given by the vector

Z(t) = < Zi(t, t t ,ZK(t) >.

Then total real power losses throughout the network are:



1(t) = 1 K(t)). (20)

An electric power system has an energy balance constraint:

SY(t) = D(t) + 1(t). (21)

Other network constraints must also be observed. For simplicity, we only present

transmission limits in this formulation. Additional constraints, such as voltage limits, can

be added and consequently lead to similar final solutions under the same approach. In the

formulation here, flows in each line must not exceed design limits, or the line will fail:

Zmin,k Zk(t) < Zmax,k Vk E X, (22)

where Zmin,k and Zmax,k are design limits for line k.

The power flows Z(t), in turn, depend on generation and demand at each node:

Z (t) = Z (Y(t), D (t)), (23)

where Y(t) and D(t) are the vectors of generation and demand augmented to have one

element for each node.

Bidding acceptance rules

The bidding acceptance rules associated with the spot pricing structure is to

maximize end-users' plus suppliers' surplus, which is the social welfare defined in

Section 2.3, subject to the previously discussed constraints. These constraints depend on

the suppliers' capital stock of generators and transmission lines. For pricing and

operational decisions, we maximize short-run welfare with a fixed capital stock. This is,



across the hours t E T, we wish to maximize, over generator output levels Yj(t) and end-

user prices pi(t),

max: F F (Di(t)) -
t i t j

AjYj(t) (24)

subject to constraints (16) and (17) for all generators j E 3, inverse demand functions (19)

for all end users i E 3, and network constraints (20) to (23). Among these constraints,

generation constraints are derived from the suppliers' bids, which are determined by the

bidding rules, and network constraints, as established system conditions, are known in

advance to the ISO. The demand constraints, however, are neither derived from retailers'

bids nor a known condition. This is because traditional bidding mechanisms do not

require regular demand-side participation, and the value-added function F is hard to

estimate. In other words, the constraint (19) only exist here for the mathematical purpose

and will not have a concrete form in practice.

Formulation solution

We now have a constrained optimization problem. Some of the dual variables will

turn out to have interpretations as optimal prices; others will be the shadow values of

additional capacity.

The Lagrangian to be maximized by the bidding host, who is usually the ISO,

over all generation levels Yj and over prices pi(t) is:

£(t) = Fj (Di t)) - I aYj (t) -
t i t j

end-user value added generation cost

, ~~l ,t[Y(t) - K]
t i

unit capacity constraint

Y 6t [ ; (t) - Di(t) - 1(t)]
t j i

energy balance constraint

I Yj,mYj,m
j m

unit inter-temporal constraints



- Zk (t) - Zk,max )k,maxt + (Zk - Zkmin )k,min,t
t k t k

transmission line constraints, one pair per line (25)

Here Ot is the shadow price of another unit of demand at a "general" location. It will turn

out to be the optimal spot price at one of the nodes which is arbitrarily chosen as the zero

point for measurement. This node is termed the "swing bus" in power system parlance.

The multiplier pli,t is the shadow value of extra generating capacity of type j at hour t. It

is zero except when generator j at hour t is fully loaded.' Yj,m is the shadow value of the

mth inter-temporal operation constraint of unit j. It is zero except when the operation

constraint is bounded. 7k,t is the shadow value of additional transmission capacity:

7lk,t = 77k,max,t - 77k,min,t (26)

It is nonzero when line k is fully loaded. It is positive if the line is fully loaded in the

"forward" direction; negative if the line is fully loaded in the "backwards" direction.

Price settlement

The Lagrangian (25) can be differentiated with decision variables Di (t) and Yj (t)

to obtain the first-order conditions for the various generator outputs Y and end-user

consumption Di. By substituting the demand constraint (19) in, we get the price p! that

optimizes the short-run welfare function (24) and maximizes end-user profit (18). In

other words, by setting prices at p (t), the market will give a demand D! (t) , since end

users are expected profit-maximizing, that also optimizes short-run social welfare due to

D! (t) satisfies the first-order condition of the Lagrangain £(t). The optimal price at hour

t for end user i turns out to be:

p(t) = 1t 1 + ( (tk,t (27)
+ D (t)] + Di (t)

Since the formulation can be proved as non-degenerate, its optimal solutions satisfies strict slackness
complementary conditions.



The structure of this optimal price is:

optimal spot price to i = [social cost of additional demand at the swing bus]

x [1+ incremental losses caused by i]

+ [transmission constraint terms, summed over lines].

This equation settles the price of electricity at time t and location i. This price,

since derived from the prospect of end-user profit maximization, is called end-user price

or market selling price2 . Previous works states that generation price or market buying

price can be derived by considering generation as negative demand. Section 3.2.2 will

show that this statement is not rigorous and only holds for some bidding mechanisms.

In (27), 8t is the same for all end users. Define system lambda A(t) as the short-

run marginal generating cost. It is the cost of generating another MWh of electricity from

a marginal unit, then getting it back to the swing bus despite losses and transmission

constraints.

Then

ym (28)
t = (t) + (t) + I Ym(t) ay(28)

of which the structure is:

[shadow price] = [marginal generating cost] + [curtailment premium]

+ [smoothing operation premiums].

Here u(t) is the premium needed to curtail demand back to available supply, when

rationing would otherwise be necessary. The last term, Em Ym (t) Yj(t), is the premiums

for loads' smoothing operation. This term penalizes the inter-temporal demands' change

that bounds the generating operation limits.

2 the "selling" and "buying" are defined from the ISO's prospective, i.e. if the ISO sells electricity at a
certain price, then the price is called the selling price, vice versa.
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To show how Ot can be decomposed, consider the case where there is at least one

marginal generating unit which operates within its inter-temporal limits, i.e. there exists a

unit M satisfying:

o < Ym(t) < KM

and

y,m < 0 Vm E Mm.

Then by strict complementary slackness, the shadow value of capacity, 1 M,t, and the

shadow value of generating inter-temporal limits, YM,m,t, are temporarily zero. Therefore,

Ot = 2(t), and substituting this result in equation (27) the system marginal cost becomes:

AM + rdZk(t)

(t) =(t) (29)
aYM(t)

Here AM is the direct cost of incremental generation at M.

Consider now the other case in which all variable units are fully used, but none of

them touches the inter-temporal generating limits. Then all available units j have local

price higher than cost:

p;j(t) = Aj + -tj,t > 1j. (30a)

We can still define A(t) by using equation (29) for the most expensive unit, i, substituted

for M in the equation. However, because of (30a) we need a positive curtailment

premium, y(t) = lj,t > 0, to make the equations balance.

Consider another case in which a marginal unit can be found, that is, there is

sufficient generation capacity for demand. However, this marginal unit touches some of

its inter-temporal limits, YM,m. Assume there is only one inter-temporal generating limit

for every generation unit, and let this limit be the ramp-up constraint. Then the marginal

unit has a local price:



p(t) = -iM + YM,rpu > 2 M. (30b)

The equation (28) has u(t) = 0 and y(t) = YM,rpu > 0.

Thus, when there is a generator on the margin, I(t) is zero. It becomes nonzero

whenever rationing would otherwise be needed to avoid excess demand. Moreover, y(t)

sets the premium of the marginal load's inter-temporal operation based on the marginal

generation unit's inter-temporal limits. In the example of ramp-up constraints, YM,rpu

rations a sudden demand boost at hour t.

3.2.2 Under Proposed Bidding Mechanism

A critical part of spot pricing structure is the "social cost of additional demand at swing

bus", Ot, which is defined by the marginal unit M (or the last available unit ], if demand

exceeds the generation capacity) of a power system. In traditional bidding mechanisms,

the end-user added-value functions Fi(Di) is not required in the bidding rules, and

therefore the ISO cannot calculate the social optimal Di (t). For this reason, the marginal

unit M is defined under a predicted total demand DE (t) for the next 24 hours.

This definition cause two major problems: (1) the obtained optimal price does not

maximize welfare as designed in the bidding acceptance rule, but only minimizes the

generation cost; (2) since the total demand DE(t) is neither an elastic quantity in the

bidding mechanisms nor predicted at the market equilibrium, it is possible to generate a

unstable optimum, which lead to a total demand different from DE (t) under any Demand

Response (DR) program. In other words, lack of end-user value-added functions or

equivalent information, by the established formulation it is hard to find a price that allows

end users to maximize their profit while optimizing the social welfare at the same time.

For this reason, the proposed bidding mechanism defines the bidding rules

shown in equation (10). Section 3.1 has shown that from the proposed bidding rules, we

can derive the inter-temporal demand curves of end users. With these bidding rules, the

bidding mechanism defines two sets of bidding acceptance rules and price settlements

according to the two primary DR categories: time-based rates and incentive-based

demand response.



Time-based rates

Assume end users are price taking expected profit-maximizing firms. In addition,

assume that all generation condition described by suppliers' bids and transmission

condition known by the ISO are the same as in Section 3.2.1. Compared to end-user

profit defined by equation (18), end user i under time-based rates chooses their electricity

use Di (t) to maximize its profit over the rates' timeframes. Assume the rates' timeframes

are consistent with the auction period, T. The end user i's profit function is subject to its

consumption range and inter-temporal constraints de,n = de,n(Di(1), ... , Di(T)) 5 0:

max: profit for i = F(Di(t)) - pi(t)Di(t) (31)
t t

s. t. de = < de,l, ..., de,n >, (32)

Di,min < Di(t) 5 Di,max, Vt E T (33)

where de is the vector of the inter-temporal constraints of an end-user group e E E. The

demand curve that maximizes the end user i's profit is:

OF1(D (t)) V Ode'nDF (t) + D.(t) Ve,n + Pi,t = Pi(t), (34)

where vn,t is the shadow value of end user i's inter-temporal constraint de,n. Pi,t is the

shadow value of a larger electricity consumption range:

Pi,t = Pi,max,t - Pi,min,t, (35)

It is nonzero when demand Di (t) is within the bid consumption range. It is positive if the

demand to maximize the profit gets the least or most consumption value. Equation (34) is

the general form of equation (19). This demand-side information is either absent or

incomplete in traditional bidding mechanisms.



Bidding acceptance rules

The bidding acceptance rules under time-based rates programs are to maximize

social welfare as equation (24):

max: IFi(Di(t)) - I AjYj(t) (24)
t i t j

subject to constraints (16) and (17) for all generators j E 3, inverse demand functions (34)

and constraints (33) for all end users i E 1, the inter-temporal constraints of all end-user

groups e E E, and network constraints (20) to (23). We now have a constrained

optimization problem. The Lagragian to be maximized over all generation levels Yj and

over prices pi(t) is:

£(t)= Fi,(Di(t)) - , aY(t) - I Ot[I Yj(tt) - 1(t)]

t i t j t I i

end-user value added generation cost energy balance constraint

- lj,t[Yj(t) - K] - Yj,mYj,m
t j m

unit capacity constraints unit inter-temporal constraints

- [ C [(Di(t) - Di,max )Pi,max,t + (Di(t) - Di,min )Pi,mit] - de,nVe,n
t i e n

demand range constraints, one pair per end user end-user inter-temporal constraints

- I [(Zk(t) - Zk,max )?lk,max,t + (Zk(t) - Zk,min )k,min,t
t k

transmission line constraints, one pair per line (35)

Price settlement

The Lagrangian (35) can be differentiated to obtain the first-order conditions for

the various generator outputs Y and end-user electricity use Di . By substituting the

demand constraint (34) in, we get the price p* that optimizes the short-run welfare



function (24) and maximizes end-user profit (31). The optimal price at hour t for end user

i turns out has the spot pricing structure shown in equation (27):

(t) = t 1 + (t)+ (t) k,t (27)
iB, (t)] k a Di (t)

Equation (27) concludes that time-based rates d not change the optimal spot pricing

structure. This is because the end-user constraints (32) and (33) appear in both the end-

user profit maximization formulation (31) and the social welfare formulation (24)

problem. These two formulations imply that end users schedule their electricity use with

the knowledge of DA prices and the ISO sets the DA price with end-user consumption

patterns. Therefore, the optimal pricing structure will not be affected by specific end-user

consumption patterns e. This conclusion disclaims David [13] optimal pricing structures,

which are different for the short-term, long-term and real-world customers. Under

David's proposed pricing structure, the ISO sets the price regardless end-user

consumption limits. Therefore, the obtained price will lead to an infeasible generation

and demand output.

To calculated equation (27), we transform the demand curve (34) into its PEM

form in (15):

D - eDiref = ETXT (Pi - Pi,ref), (15b)

where e is a unit vector of dimension T, and Di, pi are vector of demand and prices at

hours t E T.

If the PEM TxT is non-singular 3, we define an inverse matrix fTxT:

TxT = ETXT, (36)

and

api(t)
tr = Di(r)' (37)

3 if the PEM is singular, a fine adjustment can make it inversible.
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where (t, is the row t and column r entry of TXT"

Since the PEM is known from the retailer i's bids, we can derive (t, and substitute

equation (27) into equation (37), which sets the accepted bids Yj and market price pi. The

optimum set by this approach, since calculated under elastic demand, is the market

equilibrium, which is stable under DR programs and optimizes social welfare.

Incentive-based demand response

An incentive-based DR program can be either an emergency or a regular DR

program. The entities such as the ISO who initiate these programs, when needed, will call

their customers. Instructions are included in these calls, telling the customers how much

electricity use to change. The customers are paid by contracted incentives if they respond

to the call, and are penalized if they do not respond. The incentives and penalties are

predefined in the DR programs' contracts in advance. The customers do not know when

they will be called in advance. Assume there are F incentive-based DR programs in our

DA market. Y is the complete set of these DR programs. Incentive-based DR program

f E F defines its instruction at hour t is af(t). Let the time set Tf be the hours at which

DR program f will call its customers, then the instruction vector for all the DR programs

on the market is:

a =< al(t),..., aF(t) >, (38)

where

af(t) = af(D1(t), ... , Di(t)) < O, Vt E Tf, i E f n I and f E (39)

Since end users who contract with the DR programs do not know when they will be

called in advance, the end users maximize their profit under the same formulation as

equations (31) to (33). This formulation in turn leads to the demand curve of equation

(34).



Bidding acceptance rules

The DR programs' constraints (39) are known by the ISO, who conducts the DA

auction. Therefore, the bidding rules are to maximize end users' plus suppliers' surplus:

max: CZ F(Di(t))-ZZ j Yj(t), (40)
t i t j

subject to constraints (16) and (17) for all generators j E 3, inverse demand functions

(34) and constraints (33) for all end users i E 3, the inter-temporal constraints of all end-

user groups e E , network constraints (20) to (23), and constraints describing all

incentive-based DR programs f E Y (38).

We now have a constrained optimization problem. The Lagragian to be

maximized over all generation levels Yj and over prices pi (t) is:

£(t) = (41)

C F(Di(t))
t t j

end-user value added generation cost

+ t[ Y(t) - Di(t) - 1(t)]- (t) - Kj]- [ - Yj,mYj,m

t j i tj m

energy balance constraint unit capacity constraints unit inter-temporal constraints

- [(Di(t) - Di,max )Pi,max,t + (Di(t) - Di,min )Pi,min,t] -e,ne,n

t _ e n

demand range constraints, one pair per end user end-user inter-temporal constraints

- I [ (Zk(t) - Zk,max )?lk,max,t + (Zk(t) - Zk,min )7lk,mint] - I Y af(t)oft

t k f tETf

transmission line constraints, one pair per line incentive-based DR constraints



Price settlement

The Lagrangian (41) can be differentiated to obtain the first-order conditions for

the various generator output Yj and the retailer electricity consumption Di. Assume By

substitute the demand constraint (34) in, we get the price p* that optimizes the short-run

welfare function (40) and maximizes end-user profit (31). The optimal price at hour t for

retailer i turns out to be:

i (t) = t 1 +  (t) k,t (t) (tf,t (42)
D D, (t) , (t + a D) (t)

k f

which has a structure as:

optimal price to i under f = [social cost of additional demand at the swing bus]

x [1+ incremental losses caused by i]

+ [transmission constraint terms, summed over lines]

+ [DR constraint terms, summed over DR programs]

From this equation (42), we have the following results about the value of energy

at hour t and location i under DR programs f:

Result 1

The DR constraint terms of the optimal price provide additional incentives, which

motivate end users fully response. Assume the DR instruction f at hour t and location i is

to reduce demand, then oaf(t) > 0 according to equation (39). The DR constraint'saoD(t)

shadow value of,t is positive when end user i does not fully respond and only satisfies

marginal requirements, af(t) = 0. In this case, the DR constraint term aOaf ,t

becomes positive, and the price pf(t) increases. This higher price will discourage i's

electric use, and thus acts as an additional incentive (or penalty) to the DR program. On

the other hand, when end user i fully responds, shadow value of,t is zero. Thus, the DR

af (t)constraint term an() oaf,t will disappear the price is lower.



Result 2

In a power system, two points geographically different at il and i2, contracted

with different incentive-based DR programs become separate markets for electricity, with

different electricity rates. Assume no losses and transmission limits exit, then the price

difference between the two points become:

ar (t) d a (t)
pi*2(t) - p (t) ,t - OD(t) o7,t , (43)

feF(il) fe.(i2)

where F(il) and F(i2) are DR programs contracted at location il and i2.

Result 3

The optimal price induce the demand that end users will chose to maximize their

profits. Moreover, the DR programs to call and electricity to adjust can be calculated

under this price. By substituting equation (42) into equation (37), the optimal demand is

as D (t), and the optimal curtailment is Dio(t) - D (t). If adding a binary decision

variable qf(t), which equals to 1 when DR program f is called and equals to 0 otherwise,

to the optimization formulation, we can find the optimal DR schedule by calculating

qf(t).

The proposed v. s. traditional bidding mechanisms

In traditional bidding mechanisms, the demand is predicted as an elastic quantity.

Our proposed bidding rules requires demand responsive information in price elasticity

matrices. It is misleading, however, to think that the proposed bidding mechanism

dispatches loads. Not considering Demand Side Bid in reserve market, regular demands

are un-dispatchable. The purpose of accepting bids from retailers is to require demand-

side information. Based on the information, the proposed bidding mechanism sets a price

that induces socially optimal behavior, and dispatches the generation units.

The differences between these two sets of bidding rules lead to distinctive

approaches of their bidding acceptance rules and price settlement: the traditional bidding

mechanisms determine the optimal price under the predicted demand; while the proposed

bidding mechanism sets the price that can induce socially optimal behavior, relying on

end-user profit maximization. For this reason, the proposed bidding mechanism is more

stable and remains its optimality even with demand-side participation.



3.2.3 Sensitivity Analysis of the Proposed Bidding Mechanism

This section conducts the local sensitivity analysis of the proposed bidding mechanism.

Under incentive-based DR programs, the optimization formulation of the proposed

bidding mechanism is:

max: E Fi(Di(t)) - Z jYj(t), (40)
t i t j

s.t.

Generation constraints:

0 5 YO(t) K, Vje , teT (16)

Yj,m = Yj,m (~(1), ... , Y(T)) 5 0, Vj 3,m E E (17b)

Demand constraints:

aFj(t) + Ven + Pi,t = Pi(t), Vi E 3, t E T (34)
SD, (t) D, (t)n

s. t. de = < de,1,..., de,n >, Ve E E

Di,min 5 Di(t) 5 Di,max, Vi E 3,

Di- eDi,ref = ETxT (Pi - Pi,ref),

'TxT = E- , (36)

Sap (t)
t = ) V t, E

8 D, (z>)

,nE Ve (32)

,t eT(33)

(15b)

T (37)

Transmission network constraints:

1(t) = 1 Z(t)), Vt e T(20)

Z(t) = < Z1 (t), ... ,ZK(t) >, Vt E T(20b)

S(t) = Z (Y(t), D (t)), VteT (2 3)

Y(t) = < Y(t), ..., Y/(t) >, Vt E T (23b)

D(t) = < D,(t),..., D(t) >, Vt E T (23c)

Y (t) = Di (t) + 1(t), Vt E T (21)



Zmin,k Zk(t) < Zmaxk, Vk E X,t E T (22)

Incentive-based DR constraints:

a =< al(t), ... , aF(t) >, Vt E T,f E T (38)

af(t) = af(Dl(t), ..., Di(t)) < O, Vt E Tf, i E (f n 3)(39)

Assume the above formulation can be linearized into the linear programming standard

form as:

z = min c'x, (44)

s.t.Ax = b,

x> 0,

where x is the vector of all decision variables: pi(t) and Y(t), z is the bidding

acceptance rule and (A, b) is the constraint matrix.

Assume problem (40) is feasible, then its linearized standard form (44) has a basic

feasible solution x. Let B(1),..., B(T) be the indices of the basic variables, and let

B = [AB(), ... , AB(T)] be the corresponding basis matrix. In particular, we have xi = 0

for every nonbasic variable, while the vector XB =< XB(1), ..,XB(T) > of basic variables

is given by:

XB = B-1b.

Let cB be the vector of costs of the basic variables. For each T E 3 U 3, we define

the reduced cost Ej of the variable xj according to the formula:

ej = cj - c'B-1Aj.

The basis B is optimal when it satisfies:

1. Feasibility conditions: B- l b 2 0,

2. Optimality conditions: c' - cB-'A > 0'.



Changes in c

Disturbances of generation units' cost causes changes in c. By checking the

optimal basis conditions, we find the feasibility conditions are unaffected and the

optimality conditions are affected. In addition, problem (40) is formulated after unit

commitment, thus all generation decision variables xj (j E 3) are associated with

committed units. In other words, xj (i E 3) are strict positive, and thus are basic variables.

Therefore, if the generation unit j's cost is disturbed by A, the current basis remains

optimal when A satisfies:

max: < A < min: cJ (45)
atj<o atj ati>o atj

where dat = [B-1A]tj. In this case, the change of social welfare in equation (44) is

i LjA.

When A reaches out of the range in problem (40), the new optimal basis can be

found by applying primal simplex method.

Changes in b

Disturbances in transmission limits, sudden losses of generation capacities or

transmission lines, and disturbances in the PEM can be modeled by changes in b. By

checking the optimal basis conditions, we find the optimality conditions are unaffected

but the feasibility conditions are affected. Therefore, assume b changes by A, the current

basis remains the optimal basis if:

( b b
max: 5a <A min: - (46)
t7< 0  tJ flt>0 t,

where ft = [B-']t1 , and bt = [B-'b]t. Consequently, the change of social welfare in

problem (40) is Et btA.

When disturbance A gets out of this range, the current solution is no longer

feasible but satisfies the optimality conditions. In this case, we can find the new optimal

solution by applying dual simplex method.



Disturbances in A

Changes in instructions of incentive-based DR programs can be modeled by

changes in A such as: a new variable is added and a new constraint is added.

If the disturbance accords to a new variable added to A. By checking the optimal

basis conditions, we know that the feasibility conditions are unaffected. If the t + Ith

new variable satisfies:

ct+l - cBB-'At+l > 0, (47)

the current basis remains optimal. Otherwise, we apply primal simplex method to find the

new optimal solution.

In the other case, if the disturbance accords to a new constraint added to A, the

optimality conditions are unaffected. If the current solution satisfies the added constraint,

then the current solution is feasible as well as optimal. Otherwise, we apply dual simplex

to find the new optimal solution.



3.3 The Price Elasticity Matrix
Section 3.1 and Section 3.2 briefly introduce the Price Elasticity Matrix (PEM)'s role in

the proposed demand responsive bidding mechanism. A PEM is a matrix ETT consist of

price-to-electric-use elasticities in the concerned timeframe T (see equation (15)):

AP = ETxTAP

AP1  rE11  11 "' E1T_ Apr
AP2  E21  E22  E2T Ap2  (

APT ET1 ET2 ETT APT

The PEM treats the electric use of all hours in T as products that substitute or

complement each other. Therefore, together with the reference points required in the

proposed bidding rules, the PEM constructs an inter-temporal dimensioned demand curve,

which provides demand response information.

This section further investigates into the PEM's characteristics and establishment.

Section 3.3.1 presents the PEM's classifications. Section 3.3.2 focuses on the factors that

affect the PEM's establishment, and the PEM's transformations in the proposed bidding

mechanisms. Section 3.3.3 gives a brief introduction on the PEM's estimation.

3.3.1 Classifications of the Price Elasticity Matrix

Under given DR programs, the ability of an end user to respond is influenced by both

technical and economic factors. The load of a single or multiple end users is

disaggregated into four load types: fixed, curtailable, distributed generation, and shiftable.

The shiftable load type covers the on-site storage. To represent these four load types, the

PEM is used. This representation is discussed in several previous works [6, 13, 25, 28,

29], but it has not yet been applied in a bidding mechanism.

Fixed loads are inelastic to price, and therefore all entries for this load type are

equal to zero in the PEM. Curtailable loads represent inessential loads that can be shed

(but not shifted) in the presence of high prices or incentives. Distributed generation is

similar to a curtailable load in the sense that it is turned on during high prices and

essentially contributes to a negative load. Both the curtailable loads and local generation



are represented by a PEM with negative values along the diagonal and zero values for all

off-diagonal entries. Shiftable loads can be moved to other periods during the day, but the

total amount must be preserved under the lossless assumption. Load shifting is said to be

lossless if the electric use amount is the same as before it is shifted. In the PEM, this

characteristic is described as:

jet =O0. (48)
t

where Et is the row t and column T entry of the PEM matrix erTXT

For this last type, the PEM has negative valued on-diagonal entries and positive valued

off-diagonal entries which satisfy equation (48).

For distributed generation and on-site storage, they will only operate when their

marginal costs are below the market prices or incentives. Moreover, the shiftability of

distributed generation and on-site storage is constrained by their capacity and operation

limits.

To characterize end-user shifting behaviors, we consider the topologies of the

PEM. Recall the PEM's definition in Section 3.1. For a PEM, its diagonal elements are

the self-elasticities and the off-diagonal elements are cross-elasticities. Column T of this

matrix indicates how a change in price during the single hour jaffects the demand during

all the other hours across the concerned timeframe T. Fig. 3.3.1 illustrates the structure of

the elasticity matrices corresponding to these various types of consumer reactions.



(a) Backward (b) Forward (c) Early (d) Late Shifting
Shifting Shifting Shifting

(e) Limited (f) Real-world Shifting
Flexible

Fig. 3.3.1 End-user response types modeled by PEMs.

If the only nonzero elements in this column are above the diagonal, the consumers

react to a high price by moving their consumption earlier (Backward Shifting). If they are

below the diagonal, they postpone their consumption until after the high price period

(Forward Shifting). If consumers have the ability to reschedule their production over a

long period, the nonzero elements will be spread widely over the column, probably with

more preference of shifting around their original schedules (Real- World Shifting). On the

other hand, if their flexibility is limited, the nonzero elements will be clustered around the

diagonal (Limited Flexibility Shifting). Further classification under Limited Flexibility

Shifting can be obtained by examining the specific shifting flexibility of end users [30].

Some customers may also decide that, if they have to reschedule their electricity

consumption, they might as well take advantage of the hours of lowest prices, which

typically are in the early hours of the morning (Early Shifting and Late Shifting).

3.3.2 Factors Affecting the PEM's Establishment

Several factors affect the PEM's establishment from the demand side or the system side.

Demand-side factors include by end-user shifting behaviors and loads' physical



characteristics, which are invisible from a central perspective such as the ISO. For this

reason, we address in this section the system-side factors in terms of the two types of DR

programs. Knowing these factors will help us better design and implement DR programs.

We will examine the demand-side factors in the next section.

Time-based rates

Time-based rates affect the PEM's establishment by its designed timeframe,

which determines the non-trivial entries of the PEM. As defined in Section 3.1, the

dimension of the PEM, T, equals the bidding mechanism's transaction period, which

further depends on the weather forecasting ability or specific market environments .Then

for a T by T PEM, ETXT, its effective-price hours and influenced-demand hours are

defined by its non-trivial rows and columns. Collect all non-trivial rows Ta and non-

trivial columns Tb of ETxT into a new matrix of dimension ITa I by ITbI. Mathematically,

this ElTajxTbI can be interpreted as a map from a ITa -dimensional price space to a jTbl-

dimensional demand space, illustrated in figure 3.3.2.

ST

Fig. 3.3.2 The row dimension and column dimension of a PEM reflects affecting and

affected periods in the timeframe of interest.

For ElTalxJTbl, its rows reflect the hours at which the prices take effect, and its

column Ta reflect the hour at which the demand can be influenced. Viewed on the same

time axis, hours in Ta and Tb can be the same, overlapping or departure from each other.



For this reason, in EITalxlTbI the self-elasticities are not necessarily on diagonal any more.

The hours in Tb are limited to a proper sub-set of the hours approachable from Tb. The

hours in Ta is determined by the internal attributes of the consumers' group. In other

words, the PEM relates changes in demand to changes in prices within a single

scheduling period. Changes in demand due to unusual prices in a previous period must be

carried over separately in the load forecast. Therefore, an effective DR program design

will make full use of the hours in Tb.

On the other hand, the PEM's entries of hours in Ta indicates end users' total

energy change after scheduling. Remember that we define lossless by equation (48).

Likewise, if end users' total energy change after scheduling is reduced, then: Et Et, < 0;

otherwise: Et e, > 0 . Therefore, energy-saving DR programs should set their

implementing time during a period in Ta, such that

E < ra, (49)
t

where a describes the magnitude of which the total energy can be saved after

rescheduling.

The consumers' ability to react to unusual electricity prices varies with the time of

day. One column of the elasticity matrix can therefore not be deduced from another

through a simple translation along the diagonal. By constructing a price elasticities

database depicted in figure 3.3.3, we can establish a PEM under a time-based rate

program during any hours. By selecting DR programs' starting timings and their

timeframes, the DR programs utilize different parts of the database. This database can be

repeated to cover all possible starting timings and timeframes. For example, if Tb is from

0:00 to 23:00 and Ta is from the six hours before the scheduling hour to the six hours

after the scheduling hour. The DR program's starting timing is 21:00 and its timeframe is

24 hours. To construct the PEM under this DR program, we replicate the existing

database and connect the two databases at 23:00 and 0:00. Thus the new database

becomes a ITax 2|TbI matrix. The PEM is obtained by selecting the entries of the

corresponding hours in the database and setting all rest entries as zeros.
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Transformations of the PEMs

The proposed bidding mechanism can be applied to more occasions with the

PEMs' transformations. These occasions include: in RT markets, for industrial end users,

under production management and for end user sensitive to other factors.

In RT Markets:

In RT markets, no bids are submitted or accepted for lack of transition time. The

generation units and demand directly respond to the RT price released. In traditional

bidding mechanism, the ISO calculated the RT prices based on generation bids of DA

market, updated demand forecasts and real-times conditions in ancillary markets. In the

proposed bidding mechanism, however, since the DA prices are calculated considering

demand response and thus at the market equilibrium, there is no need to update demand

forecasts in real time. Nevertheless, the demand curve may change due to exogenous

factors such as weather. For this reason, fine adjustment of PEMs' entries and of

reference points are needed to compute the optimal RT prices.

Moreover, end users cannot reschedule the electric use of the hours before the RT

is released. Therefore, assume the RT price is calculated at hour r, then the ISO should

update the PEM by setting its columns before r to zero. The final payments of the DA

and RT markets are settled by either the two-settlement or the post-settlement system.

For industrial end users

A transformation of the PEM is to Demand Redistribution Matrix (DRM) of

which entries are demand to demand elasticities. In the DRM, the phenomena that load

reduce at one time and recover at another can be characterized by load redistribution
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Transformations of the PEMs

The proposed bidding mechanism can be applied to more occasions with the

PEMs' transformations. These occasions include: in RT markets, for industrial end users,

under production management and for end user sensitive to other factors.

In RT Markets:

In RT markets, no bids are submitted or accepted for lack of transition time. The

generation units and demand directly respond to the RT price released. In traditional

bidding mechanism, the ISO calculated the RT prices based on generation bids of DA

market, updated demand forecasts and real-times conditions in ancillary markets. In the

proposed bidding mechanism, however, since the DA prices are calculated considering

demand response and thus at the market equilibrium, there is no need to update demand

forecasts in real time. Nevertheless, the demand curve may change due to exogenous

factors such as weather. For this reason, fine adjustment of PEMs' entries and of

reference points are needed to compute the optimal RT prices.

Moreover, end users cannot reschedule the electric use of the hours before the RT

is released. Therefore, assume the RT price is calculated at hour -, then the ISO should

update the PEM by setting its columns before z to zero. The final payments of the DA

and RT markets are settled by either the two-settlement or the post-settlement system.

For industrial end users

A transformation of the PEM is to Demand Redistribution Matrix (DRM) of

which entries are demand to demand elasticities. In the DRM, the phenomena that load

reduce at one time and recover at another can be characterized by load redistribution



coefficient matrix 7r. The DRM is easier to describe than the PEM for industrial end users

and under incentive-based DR programs.

For production management

Sometimes load relocation takes place in a macro perspective such as from one

consumer sector to another sector. It is therefore necessary to extend this to the case when

some consumers will alter the supply reliability level which they have selected, and when

this happens, a portion of load in one consumer reliability sector will transfer to

another. This situation can be represented by:

El ... ElQ
EQxQ = I "'

EQ, ... EQQ (QxQ)

where sub-matrix Eiq, represents the effect of the load variation of consumer sectors q on

the load of consumer sector i. This matrix EQXQ describes constraints in production

management. These constraints are invisible to end users who are expected profit-

maximizing firms, but should be considered in at the macro level. For this reason, if we

consider setting the optimal price in DA markets, ETxrT only appears in formulation

(31)'s but not formulation (24)'s constraints. Consequently, the optimal price under ETXT

is:

p(t) = Ot 1 + D~ (t) aD, (t) k,t + Ei,q)q,t + ( - Ei,i)(i,
+ I a Di(t) k aDi (t) q(k q~i

which has a structure as:

optimal price to i = [social cost of additional demand at the swing bus]

x [1+ incremental losses caused by i]

+ [transmission constraint terms, summed over lines]

+ [production management constraint terms, summed over related sectors]



The first two terms of the optimal price have the same physical meaning defined in

Section 3.3.2. The last term is the marginal demand cost to the system caused by

production management constraints.

Other factors:

Inter-temporal constraints on demand and system sides can be described in

elasticity matrices. These transformed PEM can be applied in the proposed bidding

mechanism with the original PEM. The bidding rules, bidding acceptance rules and price

settlement rules are unchanged with application of these transformed PEMs. However,

we should notice that if the transformed PEM describes constraint on demand side, then it

should appear in both the demand constraints (formulation (31)) and the system

constraints (formulation (24)); if the transformed PEM described constraint on system

side, then should appear only in the demand constraints (formulation (31)).

3.3.3 Estimation of the PEM

Demand-side factors affect the establishment of demand curve, and thus affect the

establishment of PEM entries' values, which are normalized end-user elasticities.

Economics defines price elasticity as consumers' sensitivity to price changes. Normalized

elasticities are calculated as the ratio of the absolute change in demand to the absolute
ad

change in price, E = - (MW/$). In the proposed bidding mechanism, it is the retailers'

responsibility to estimate the PEMs and submit them in bids.

PEM entries' values can be estimated with multiple methods. The most common

method is end user survey. This method is time-consuming, high-cost and not very

reliable. Another method is to regress demand curve with past data, and derive the PEM

from the obtained demand curve by doing partial differentiation. The advantage of this

method is that it is faster and getting more accurate with more data accumulated in the

regression. Learning effect can be applied to the regression if other exogenous

disturbances, such as weather, exist. The disadvantages of this method are: it can be very

complex to regress a multi-dimensional function (not to mention in the DA markets the

dimension can be 12 or 24); and it will be difficult to do the regression at the beginning

with few data available. The most feasible method of PEM estimation is to build

mathematical models on end-user electric use. This method requires investigations into



the loads' physical characteristics and thus can be very expensive. However, it can be

done without too much effort to the industrial consumers and for some load types. For

example, the PEM of distributed generators can be estimated easily if we know their

capacity and cost function, since they are only operated when the market prices are

higher than their marginal cost.

A further issue that needs to be considered is the range of price and demand

variation under which the PEM entries remain constant. Some studies argue that if the

demand at a certain hour varies far from its normal operating range, end users are likely

to become less sensitive to price variations at other hours.[13] Other studies state that end

users are less sensitive to prices which vary far from their normal rating range. In

addition, there exists a level beyond which load reductions become very difficult and the

loads can be considered as inelastic. Furthermore, customers are much less likely to

increase or reorganize their production to increase their consumption of electricity in the

case of a short-term price drop than they are to react to a price increase [29]. In all above

cases, the PEM entries are no longer a constant, but a function depending on demand,

price, the changes of demand or price, or other factors. An example illustrating such an

occasion is depicted in figure 3.3.5.

Ad

------------- AP,--- -..

Fig. 3.3.5 the PEM entry varies with demand and price changes. The horizontal axis
represents the change of price, and the vertical axis represents the change of demand. The
ratios of Ad to Ap of any points on the red segments are the PEM entry's value. Assume
the price reference point is $0, we can observe that the end user is less sensitive to the
price change when the price is too low or too high.



Many analyses and experiments have been under taken in order to examine price

responsiveness as well as the responsiveness to shifting demand to a lower cost hour.

Some experiments are more relevant to demand response because they examine

responsiveness to day-ahead hourly prices or with enabling technology. Results are

highly variable, partly because responsiveness behavior is complex and highly dependent

on the details of the experiment including how prices are communicated. For example, if

customers are recruited into a program by being assured that they would not have to pay a

higher bill than if they had not participated in the experiment, their incentives are eroded.

Similarly, if they know the program will last for only a year or two, they have little

incentive to replace appliances or make a capital expenditure that would pay off under a

long-term program. Price responsiveness is much greater when customers have an

incentive to react by purchasing more efficient appliances and equipment; in the short run,

end users can reduce usage only by forgoing or shifting consumption. A 1984 review of

34 short-run and long-run estimates found median elasticities of -0.20 and -0.90,

respectively, implying that a 10 percent price increase would reduce consumption by 2

percent in the short run and 9 percent in the long run. Over the long run, these same

customers can make additional choices about buying efficient appliances and equipment.

Figure 5 shows the difference between short-run and long-run responsiveness [31-33].
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A recent Department of Energy review published price elasticities of substitution

under TOU, critical peak pricing (CPP), and day-ahead real-time price (RTP) situations.

Figure 6 shows averages and ranges reported from four of these studies in residential and

commercial and industrial (C&I) sectors. The range of elasticities of substitution was

0.02 to 0.27 [34, 35].

0.05 0.1 0.15 0.2 0.25 0.3

Elasticity of Substitution

In the future, short-run price elasticity and elasticity of substitution will depend on

the sophistication of enabling technology. Modem electronics allow customers to respond

to each price change without further thought or effort by having an "energy manager" run

electric hot water heaters, dishwashers, pool pumps, and air conditioners during less

expensive hours [36].



3.4 Algorithm
This section will briefly discuss the algorithm of the proposed bidding mechanism. One

algorithm proposed firstly by David [13] is simulating a market interaction procedure

between supply and demand, illustrated in figure 3.4.1.

PEM

Fig. 3.4.1 the market interaction algorithm. In the figure, the UC block refers to the
unit commitment computation, and the ED block refers to the economic dispatch. The
PEM block refers to the multiplication operation with the end-user PEM. D and p are the
demand and price. Dref and Pref are the reference points of demand and price. dD and
dp are the deviation of demand and price from their reference points.

The algorithm can be described by its iterations: in the first iteration, we compute

the optimal price and generation schedule with the initial value of consumption Do(t) in

equation (10). Assuming the optimal price obtained is denoted as po(t), we compare

po(t) with the reference price poef(t) and get their difference denoted as dpo(t). By

multiplying the price difference dpo(t) with the end-user PEM, we get the demand

deviation from its reference point dDo(t). The sum of Drej(t) and dDo(t) gives us the

end-user response to price po(t), which is denoted as Dl(t); in the second iteration, we

use D1 (t) to compute the optimal price and generation schedule, and repeat the procedure

of the first iteration, and start the third iteration... It is predicted that after doing the

iterations K times, we can find a market equilibrium, at which DK (t) equals DK+l(t).

This algorithm can be extended to accommodate multiple retailers participating in

the proposed bidding mechanism. More bids from retailers can be included by simply

adding feedback branches in parallel, as shown in figure 3.4.2.
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Fig. 3.4.3 Non-convergence caused by steep local relative slope of the supply curve.

This disadvantage is illustrated with a single hour case in figure 3.4.3: If we start

from point 0, Do will generate an optimal price PA in the traditional bidding mechanism;

Price PA triggers the end-user response as DB; Demand DB generates an optimal price Pc

which in turn triggers the end-user response as DD. However, since demand DD gives the

original price PA, the following iterations will be stuck in the four points A', B, C and D

but will be never able to reach the market equilibrium E. The cause of this problem is that

the demand response from B to D is larger than the total capacity of the generation units

of which the marginal costs are between PB and PD. Therefore, we can conclude that the

algorithm stops evolve forward to the market equilibrium when the demand curve is not

locally sufficiently "steep".

This non-convergence condition can be described by the "relative slope" concept

that is developed in our research. Using the single-hour example of figure 3.4.3, we

define the two generation units between which the non-convergence happens as GA and

Gc. The non-convergence condition is,

cap(GA) - ca--p(Gc) > cap(GA)- Dk((GA)), (50)
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Fig. 3.4.2 The market interaction algorithm with multiple end-user types.

As defined in Section 2.3, the bidding acceptance and price settlement are

implemented through running unit commitment and economic dispatch in electrcity

market. This process is defined as market clearing process. The key idea behind this

algorithm is to first clear market under inelastic demand, and then compute the demand

response to the market clearing price. In other words, the algorithm consists of two parts:

the market clearing process under traditional bidding mechanism in which the demand is

regarded as inelastic, and demand response quantified by the PEM. Repeating the two-

part market interaction in every iteration, the price and generation schedule will evolve to

the market equilibrium.

3.4.1 The Disadvantages of the Market Interaction Algorithm
The algorithm evolution failure and relative slope

The advantage of this algorithm is simple and easy to understand. However, this

algorithm has several disadvantages due to the "interaction" approach. One disadvantage

of this algorithm is that it can not guarantee to find a convergent solution even if the

market equilibrium exists.



the generation capacity summation from the least expensive

generation unit to the generation unit that has a marginal

cost only less than GA;

cap(Gc) the generation capacity summation from the least expensive

generation unit to Gc;

A(GA) the marginal cost of GA;

Dk (p) the demand curve function with slope k and independent

variable as price p.

Figure 3.3.8 shows that

cap(GA) - cap (Gc) = ctan LDBA (A(GA) - D' (cap(GA))) (51)

where A(GA) the marginal cost of GA;

Dl (d) the inversed function of demand curve Dk with

independent variable as quantity d.

From equation (50) and (51) we have the non-convergence condition as,

ctan /LDBA - ((GA) - Dj 1 (cap(GA))) > cap(GA) - Dk((GA))

tan zDBA < (GA)(52 a)
cap(GA)- Dk(,,(GA)) '

where tan LDBA = tan LBDC, and tan LBDC is defined as the slope k of the demand

curve Dk. Therefore, we rewrite equation (52 a) as

where cap(GA)



k < kA, c (52 b)

and

A(GA) - Dk' (a p(GA))

kA,c cap(GA) - Dk(,I(GA)) (52 c)

where kA,c is the relative slope of the step-sized supply curve segment defined by GA and

Gc. Given this relative slope kA,c, we can linearize the step-sized supply curve segment

from GA to Gc as the orange line segment in figure 3.4.3. For multi-period cases, load

shifting effects caused by other hours may induce unconvergent behavior as well.

Therefore, equation (52 b) and (52 c) are the sufficient but not necessary condition. To

apply this condition in multi-period cases, the demand curves' slopes are set as the self-

elasticities of the PEMs. The relative slopes of the supply curves can be found between

any two generation units and using equation (52 c), and thus determines the convergence

under the market interaction algorithm.

The algorithm evolution failure and demand clears the market

Another disadvantage is observed when the demand clears the market, shown in

figure 3.4.4. In the proposed bidding mechanism, when demand is on the brder of the

marginal unit or exceeds the total generation, we allow demand to clear market. In fact,

demand-clearing market generates the curtailment premium P, defined in equation (28),

which indicated the system marginal cost of starting another generation unit. Demand,

since considered as inelastic, is not allowed to clear market in traditional bidding

mechanisms. In traditional bidding mechanisms [10], when the market is required to be

cleared by demand is defined as market equilibrium not existing. In the situation

illustrated in figure 3.4.4., the mentioned algorithm can never reach the market

equilibrium, since clears market under traditional bidding mechanism E. The results of

iterations will cycle among the market equilibrium's neighborhood, A, B, C and D.

Therefore, with the mentioned algorithm undermines the benefit of the proposed

algorithm, since we cannot find the market equilibrium nor calculate the curtailment

premium when demand is needed to clear the market.
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Fig. 3.4.4 Non-convergence caused by demand clears the market.

3.4.2 The Improved Market Interaction Algorithm

I improve the mentioned algorithm by considering the two mentioned situations in figure

3.3.9 and 3.3.10 whenever results begin fluctuating between several values. More delicate

algorithm can be developed based on formulation (40), but it is out the scope of this

thesis. The diagram of the improved algorithm is shown in figure 3.4.5.



Fig. 3.4.5: The improved market interaction algorithm.

To find the market equilibrium, we first run the market interaction algorithm. For

every iteration K, we check if the market equilibrium is found by checking if DK = DK+1

holds. If the optimal prices of the recent iterations oscillate among several values, for

simplicity, say between il(G,) and A(Gp), we further examine the reason for the

oscillation. The oscillation is caused by demand clears the market if the generation unit

Gp has the marginal cost ordered next to Ga. An alternative is to compare the demand

curve slope with the local relative slope of the supply curve by equation (52 b) and (52 c).

The oscillation is caused by the relative slope of the supply curve is locally greater than

the slope of the demand curve.
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Fig. 3.4.7 Price ocsillation happens at multiple hours. The two curves are the market

clearing prices obtained from two sequential iterations of the market interaction

algorithm. In this figure, prices oscillate between 9.8 and 12.6 at Hour 13 and Hour 14.

Assuming 9.8 and 12.6 are marginal costs of generation units Ga and Ga+1, we know that

price may clear the market at both Hour 13 and Hour 14. However, it is possible that only

the price at Hour 13 clears the market and the oscillation at Hour 14 is due to the load

shifting from Hour 13, or the other way around. Except for Hour 13 and Hour 14, the

prices converge to 9.8 at all the other hours.

It is because the price oscillation between A(Ga) and A(Ga+,) or A(Ga-1) at

hour Hn, may be due to the demand clears the market at Hn, or it can be due to the load

shifting from other hours Hf at which demand clears the market. For this reason, when

prices oscillate between A(Ga) and A(Gp), where A(Gp) equals to A(Ga+1) or 2(Ga-1),

at multiple hours, we search on the demand curve for the market equilibrium according to

the following steps:

1. Among all possible mutations, denote all the hours at which prices

oscillate between A(Ga) and A(G#) as HI. Among H1, denote the hours at

which demand clears the market as HDCM and other hours as HD---;

Denote all other hours at which prices are convergent as Ho;

2. At HDCM, set prices as variables PDCM, and set demand quantity dDCM as

the lower quantity of -cap(Ga) and cap(Gp); At H§-, set prices Po5-c as
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The point setting method

When oscillations are resulted from the supply surface is locally too steep, we
reverse the evolving direction of the algorithm by setting another demand starting point.
Figure 3.4.6 illustrates this idea.
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MW

Fig. 3.4.6: Searching for the market equilibrium under non-convergence. Reverse the
searching direction when the local relative slope of the supply curve is steeper than the
slope of the demand curve.

The demand curve searching algorithm

When demand clears the market, we search on the demand curve for the market
equilibrium. Consider the single hour market interaction in figure 3.3.9. The market
should be cleared at the demand that equals to the lower capacity of unit Ga; or
Gp, (cap(Gc) in figure 3.3.9. Therefore, we can find on the demand curve for the market

clearing price at the point of which the demand is cap(Gc) . In multi-period market
interaction, the searching can become much more complex. Figure 3.4.7 gives an
example.



A(Ga) or A(G#), and set demand quantity as variable dD~ ; At Ho, set

prices as their convergent prices Po, and set demand quantity as variable

do;

3. Substitute all parameters and variables into equation (15), which is

Ad, E11 E11  * E1T Ap]
Ad 2] E21  E2 2  E2T Ap 2. . . . (15)

AdT- LET1 eT2 ETT APT-

where Adt = dt - dref,t, APt = Pt - Pref,t and H1 n Ho = T. We obtain

ITI linear equations to solve ITI variables PDCM, d5j-j and do;

4. Check the solution of equation (15). The solution is feasible if:

a. PDcM e (Ai(Ga),2(Gp)) and

b. d5C c:ap(Ga) if PDIC is set as A(Ga); do§y 5 cap(Gf) if

p§c is set as A(Gf).

5. The searching algorithm terminates when the feasible solution is obtained.

Otherwise, go back to step 1 and try another mutation of HDCM and HDCM

in H1.

For Ho, the variables do are predicted to always fall in the range that induces the

convergent price Po. Because if the shifting effects from prices A(Ga) and A(Gp) both

result in the demands, do,a and do,, , that induce Po , then any price

PDcM E (A(Ga), A(G)) will result in a demand, do,DcM E ( do,a , do,), that induces Po

as well.

This searching algorithm terminates once a feasible solution is found. In other

words, a unique solution is expected among all candidate solutions, which are generated

by mutating HDCM and H-cm in H1. This is based on the fact that the market has a unique

equilibrium if the supply curve and the demand curve are both linear.
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Chapter 4

Numerical Examples

An essential characteristic of the proposed bidding mechanism is demand response to RT

price and inter-temporal load shifting effects. This characteristic results in multiple

benefits such as reducing RT load uncertainties, increasing power systems' reliability and

reducing the cost of balancing spot electricity market.

In order to illustrate this characteristic and the working process of the proposed

bidding mechanism, this chapter gives sets of numerical examples under various systems

and loads' conditions. Section 4.1 describes the simulation environment and data

background. Section 4.2 presents and analyzes the numerical examples. The full case

description and raw data of the numerical examples are presented in Appendix A.

4.1 Simulation Environment and Data Background

The numerical examples in this chapter are classified into five sets according to their sub-

market environment types, systems' status and end-user types.

The entire market of this thesis is wholesale DA and RT energy-trading electricity

pools. For the convenience of data presentation, the sub-market types under which the

numerical examples are simulated are set as the DA and Hourly Ahead (HA) markets.

The HA market is the same as RT market in the perspectives of the bidding acceptance

rules and the price settlement of the proposed bidding mechanism. The only difference of

the HA and RT markets is that the RT market has a much short transaction period,

usually as five minutes, and thus requires much larger sized PEMs and more computation

repetitions to settle down the final payment. This statement is illustrated in the numerical

examples set V.

In the numerical examples' simulation, we consider three major system states: the

ordinary state, under contingencies and with renewable energy generation. The

contingent state covers two major type contingencies in power systems: sudden loss of

transmission and sudden change of generation units' marginal cost. The involvement of
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renewable energy brings a stochastic factor from the generation side. The numerical

example shows that the proposed bidding mechanism has more benefits under these two

unordinary system states.

Nine end-user types are examined in the numerical examples. These end-user

types are modeled by PEMs and load operation constraints. Shifting effects are observed

and analyzed in perspectives of generation dispatch schedules, prices and final load

profiles.

The system status, end-user types and sub-market types together define the

settings of a simulation case. Every simulation case examines two sets of bidding data.

The first data set covers bids of five hourly periods. Demand bids of this data set have flat

reference values in equation (15). The numerical examples obtained from this data set are

more observable in end-user shifting patterns. The second data set contains bids of 24

hourly periods. The demand bids are deduced from the load data of New York

Independent System (NYISO). The load data are collected from power transactions of

New York City, Dunwod and Long Island in August 09, 2009. Figure 4.1.1 shows the

control region map of NYISO. The numerical examples obtained from this data gives an

intuition of the practical performance of the proposed bidding mechanism.
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Fig. 4.1.1 Control region map of the NYISO.

The numerical examples are examined in a system with three generation units and

three retailers. For data analysis convenience, no network constraints are considered, and

only the capacity limits are considered among all generation constraints. Therefore, the

formulation of the numerical example in this chapter is,
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max: F, (D (t)) - , 1Yjt), (40)
t i t j

s.t.

Generation constraints:

0o Yj(t) < K, Vj

Demand constraints:

aF1(D (t)) ' de,na i +(t) +(t) ven + P,t
a Di (t) a D8 (t)

n

s. t. de = < de,l, ..., de,n >,

Di,min Di(t) : Di,max,

Di - eDi,ref = TxT (Pi -
-1

'TxT = ETXT,

api (t)
Ft aD i(T)'

EJ,teT (16)

= pi(t), Vi E J7, t E T (34)

Ve E ,n ENe (32)

Vi e ,t E T (33)

fPi,ref), (15b)

(36)

V t,r E T (37)

The improved market interaction algorithm is used to solve the above formulation. This

algorithm is presented in Section 3.4. The optimization software is the General Algebraic

Modeling System (GAMS), module rev 149. The interfaces of data transfer and process

are written in MATLAB, version 7.4.0.287 (R2007a).
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4.2 Examples under Various End-User Types
This section presents numerical examples of the proposed bidding mechanism's

performance under various end-user types. Nine end-user types are examined

individually. The nine end-user types are: curtailable load, early end users, late end users,

forward shifting end users, backward shifting end users, flexible end users, real world end

users, distributed generation and on-site storage.

The numerical examples are examined in a system with three generation units and

three retailers. Table 4.2.1 presents bids of the three generation units. For data

presentation's convenience, all quantities in this section are normalized into unit numbers.

In addition, capacities and marginal costs of generation units are assumed time-invariant

in this section.

TABLE 4.2.1 Generation Parameters
Generation No. Capacity (unit) Marginal Cost (unit)

G1 1.0 9.8

G2 0.7 10.7
G3 0.5 12.6

This section examines the numerical examples in the DA market. The transaction

period of the DA market is set as one hour. The three retailers are considered identical. In

other words, they submit the same reference points and load shifting pattern. Two data

sets are used as the retailers' bids. The first data set is of five-period timeframe. The

reference prices and loads are flat in time, shown in figure 4.2.1.

107



0.7 13

0.65 12.5

0.6
12

0.55

11.5

0.5

11

0.45

10.5
0.4

0.35 10

0.3 9.51
1 2 3 4 5 . 2 3 4 5

Hours Hors

Fig. 4.2.1 Reference load and price of five-period retailers' bids

The second data set is of 24-period timeframe. The reference prices and loads are

derived from the electric use of Long Island, New York, in August 9, 2008. The data

source is introduced in Section 4.1. Figure 4.2.2 depicts the reference points.

0.55

0.53
13

0.51

0.49
12.5

0.47

0.45
12

0.43

-0.41
11.5

- 0.39
0.37 11

0.35

0.33 
10.5

0.31

0.29 10

0.27

0.25 1 L I I L I - L L J i - L L -Li-L L 95
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hurs Hours

Fig. 4.2.2 Reference load and price of 24-period retailers' bids
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The transaction timeframe of the DA market equals to the timeframe of the data set

applied. The initial load values are set the same as the reference loads. In addition, we set

maximum loads to 1.0 and minimum loads to 0.0.

The nine end-user types are modeled by nine PEMs. Table 4.2.2 row 2 to 10

describes the end-user types and their PEM models for all the numerical examples. The

"PEM" column of Table 4.2.2 gives illustrations of the PEMs' topologies of all the end-

user types. The last column of Table 4.2.2 gives the PEM examples of the 5-period data
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TABLE 4.2.2
No. End-User Type PEM 5-Period Example

1 Inelastic N/A N/A
2 Curtailable Load r-0.2 0.00 0.00 0.00 0.001

0.00 -0.2 0.00 0.00 0. 00
0.00 0.00 -0.2 0.00 0.00
0.00 0.00 0.00 -0.2 0.00
0.00 0.00 0.00 0.00 -0.2

3 Early End User I r- 0 .2 0.20 0.10 0.10 0.10
1 0.20 -0.2 0.10 0.10 0.10

0.00 0.00 -0.2 0.00 0.00
0.00 0.00 0.00 -0.2 0.00

L0.00 0.00 0.00 0.00 -0.2-

4 Late End User [ -0.2 0.00 0.00 0.00 0.00
0.00 -0.2 0.00 0.00 0.00
0.00 0.00 -0.2 0.00 0.00
0.10 0.10 0.10 -0.2 0.20

.L t0.10 0.10 0.10 0.20 -0.2

5 Forward Shifting -0.2 0.00 0.00 0.00 0.00

End User 0.05 -0.2 0.00 0.00 0.00
0.05 0.067 -0.2 0.00 0.00
0.05 0.067 0.10 -0.2 0.00
0.05 0.067 0.10 0.20 -0.2

6 Backward -0.2 0.20 0.10 0.067 0.05

Shifting End User -0.00 -0.2 0.10 0.067 0.05
0.00 0.00 -0.2 0.067 0.05
0.00 0.00 0.00 -0.2 0.05
0.00 0.00 0.00 0.00 -0.2]

7 Flexible End User f -0.2 0.05 0.05 0.05 0.05
0.05 -0.2 0.05 0.05 0.05
0.05 0.05 -0.2 0.05 0.05
0.05 0.05 0.05 -0.2 0.05
0.05 0.05 0.05 0.05 -0.2-

8 Real-World End -0.2 0.06 0.03 0.01 0.01-
User 0.06 -0.2 0.06 0.03 0.02

0.03 0.06 -0.2 0.06 0.03
a 0.02 0.03 0.06 -0.2 0.06

-0.01 0.01 0.03 0.06 -0.2
9 Distributed [-0.2 0.00 0.00 0.00 0.001

Generation 0.00 -0.2 0.00 0.00 0. 00
0.00 0.00 -0.2 0.00 0.00
0.00 0.00 0.00 -0.2 0.00

-0.00 0.00 0.00 0.00 -0.2

10 On-Site Storage -0.2 0.05 0.05 0.05 0.051
0.05 -0.2 0.05 0.05 0.05
0.05 0.05 -0.2 0.05 0.05
0.05 0.05 0.05 -0.2 0.05
-0.05 0.05 0.05 0.05 -0.2-
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set. The end-user types of the 24-period data set are modeled in an identical way.

Appendix B presents the code generating the ten 24 x 24 PEMs.

Two other major traditional bidding mechanisms are compared with the proposed

bidding mechanism. The first bidding mechanism considers demand as inelastic, and the

second bidding mechanism is the Single Hourly Bidding (SHB) which considers single

hourly demand elasticity but ignores the inter-temporal load shifting effects. These two

bidding mechanisms are introduced in Section 2.3. Bidding results of the numerical

examples are presented in Table 4.2.3 and Table 4.2.4. The case numbers of these two

table are consistent with the end-user type numbers in Table 4.2.1. The case number of

the inelastic demand bidding mechanism is No. 1, and the case number of SHB is No. 2.

In Table 4.2.3, the reference prices and reference loads are plotted as the red lines

in the figures of final load profile and in market clear price.

Case 1 describes the bidding results under the inelastic demand bidding

mechanism. The bidding results also appear under the proposed bidding mechanism if the

end users are not affected by the prices, i.e. inflexible end users.

Case 2 describes the bidding results under the SHB. Its results show that the final

hourly loads are higher than the reference loads since the hourly prices are higher than

the reference prices. The bidding results also appear under the proposed bidding

mechanism, if the end-user type is curtailable load. No shifting behaviors is observed in

this case.

Case 3 and case 4 are early end users and late end users. The results show that the

market clearing prices are higher than the reference prices. Therefore, end users shift

loads to the early or late hours according to their end-user types. In addition, since their

PEMs satisfy the lossless condition in equation (48), the total reduced electric use equals

to the increased electric use in the timeframe.

Case 5 and case 6 are forward shifting users and backward shifting users. The

results show that the market clearing prices are higher than the reference prices. End

users shift forward or backward according to their end-user types.

Case 7 is flexible end users. The results are identical to those of case 1. It is

because the PEM of case 7 satisfies the lossless condition in equation (48). The hourly

shifting effects cancel off each other and result in a flat load profile.
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TABLE 4.2.3 Bidding results of the proposed bidding mechanism under nine end-user types (5 periods)
No. Load Profile Market Clearing Price Generation Dispatch Schedule
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No. Load Profile Market Clearing Price Generation Dispatch Schedule
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No. Load Profile Market Clearing Price Generation Dispatch Schedule
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No. Load Profile Market Clearing Price Generation Dispatch Schedule
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TABLE 4.2.4 Bidding results of the proposed bidding mechanism under nine end-user types (24 periods)

No. Load Profile Market Clearing Price Generation Dispatch Schedule
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No. Load Profile Market Clearing Price Generation Dispatch Schedule
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Case 8 is real-world end users. The market clearing prices are higher than the

reference prices. Thus, the electric use is reduced to lower than the reference loads. The

electric use first increases and then decreases. It is because shifting effects of the middle

hours of the timeframe are stronger than those of the side hours. The shifting effects can

be measured by equation (49).

Case 9 is distributed generation. Its PEM model is the same as curtailable load.

However, two other constraints are added to model this end-user type. The first constraint

is the distributed generation cannot operate as load. In other words, the load can only be

reduced but not increased compared to the initial load value. The second constraint is that

the distributed generation's capacity is 0.2. In other words, the load reduction cannot

exceed 0.2. In this example, neither of the two constraints are touched. Therefore, the

results are identical to those of case 2.

Case 10 is on-site storage. Its PEM model is the same as flexible end users.

Moreover, the capacity constraint is added to model this end-user type. The capacity is

set as 0.3 here. In this example, this constraint is unbounded, and thus the results are the

same as those of case 7.

The numerical examples of flat references in Table 4.2.3 straightforwardly reflect

the end-user types. All the results in this table are convergent. In practice, the end-user

types can be described by more delicate models. For example, charge and discharge rate

constraints can be added to the end-user type of on-site storage.

By analyzing all these numerical examples, we conclude that traditional bidding

mechanism can cause great deviation in setting bidding results as market equilibriums.

Figure 4.2.3 illustrate this statement. Figure 4.2.3 plots the Hour 2's bidding results of all

the ten cases in Table 4.2.3. The inelastic demand bidding mechanism sets its bidding

result at D, and the SHB set its bidding result at A. However, many end-user types have

their actual market equilibrium settled apart from A and D. For this reason, low market

efficiency, high RT market balancing cost and low reliability could be caused if applying

the two traditional bidding mechanisms under these end-user types. Applying the

proposed bidding mechanism may solve these potential problems.
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Fig. 4.2.3: Market equilibriums under the nice end-user types. The market equilibrium

at Hour 2 under the proposed bidding mechanism, the inelastic demand bidding

mechanism and the SHB.

The ten cases were also simulated with the 24-period data sets and are presented

in Table 4.2.4. Numerical examples in Table 4.2.4 provide a rich view of the proposed

bidding mechanism's performance. Analysis on these examples is similar to that of Table

4.2.3 and thus is not repeated here. Some of those numerical examples are non-

convergent, and their results depict the final oscillation range. Section 4.5 will investigate

into these non-convergent results in detail.
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4.3 Example under Multiple End-User Types
Section 4.2 assumes the three retailers are of the same end-user types. In practice,

the demand side is unlikely to have only a single end-user type, but it will include
multiple end-user types. This section presents numerical examples of the proposed
bidding mechanism under multiple end-user types. The simulation system contains three
generation units and three retailers. The generation bids remain the same as data in Table
4.2.1.

This section examines the numerical examples in the DA market. The transaction
period of the DA market is set as one hour. The three retailers have different electric use
levels and shifting patterns. In other words, their bids are distinct in reference points and
PEMs. Two data sets are used as the retailers' bids. The first data set is of five-period
timeframe. The reference prices and loads are flat in time, shown in figure 4.3.1.

07-

FT R1 13-
R2. R2
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11.50.5

0.4 
10.5 --

0.35
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1 2 3 4 5
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1 2 3 4 5

Hain

Fig. 4.3.1 Reference load and price of five-period retailers' bids

The second data set is of 24-period timeframe. The reference prices and loads are
derived from the electric use of New York City, Long Island and Dunwod New York, in
August 9, 2008. The data source is introduced in Section 4.1. Figure 4.2.2 depicts the
reference points.
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The transaction timeframe of the DA market equals to the timeframe of the data

set applied. The initial load values are set the same as the reference loads. In addition, we

set maximum loads to 1.0 and minimum loads to 0.0.

0.55
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Hour Horn

Fig. 4.3.2 Reference load and price of 24-period retailers' bids. Retailer 1, R1, uses
reference points derived from data of N.Y.C.; Retailer 2, R2, uses reference points
derived from data of Long Island; Retailer 3, R3, uses reference points derived from data
of Dunwod.

The end-user types of the three retailers are forward shifting end users, early end

users and real-world end users. These end-user types are modeled by PEMs as described

in Table 4.2.2. The bidding results of the numerical examples under these end-user types

are presented in Table 4.3.1. Reference points are plotted together with the bidding

results. Case 1 shows the bidding results under the three end-user types with the five-

period data set; Case 2 shows the bidding results with the 24-period data set.

In Case 1, the early end users and forward shifting end users shift according to

their pattern, since the market clearing prices are higher than the reference prices. For the

same reason, the real-world end users reduce their electric use and shift loads to the

middle hour of the timeframe. The generation dispatch schedule shows that the total loads

represent the mixed shifting behavior of all the three end-user types. We can also predict

that the total load will represent a certain end-user type if this type of end users occupies

a large electric use portion.
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Case 2 provides a rich view of the bidding mechanism's performance under the

three end-user types. This example is not convergent, and the results depict the final

oscillation range. Section 4.5 will investigate into these non-convergent results in detail.
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TABLE 4.3.1 Bidding results of the proposed bidding mechanism under multiple end-user types

No. Load Profile Market Clearing Price Generation Dispatching Schedule
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4.4 Examples under Systems with Contingencies
Section 4.2 and Section 4.3 examine the performance of the proposed bidding

mechanism under ordinary system state. This section gives numerical examples under

contingent system status. The simulation system contains three generation units and three

retailers.

This section examines the numerical examples in the DA market. The transaction

period of the DA market is set as one hour. The three retailers are considered identical in

their reference points and end-user types. Two data sets are used as the retailers' bids.

The first data set is of five-period timeframe. The reference prices and loads are flat in

time, shown in figure 4.2.1. The second data set is of 24-period timeframe, representing

practical daily consumption pattern. Figure 4.2.2 depicts the reference points. The source

of the two data sets is introduced in Section 4.1.

The end-user type of the three retailers is real-world end users, which is modeled

by the PEM described in Table 4.2.2. The transaction timeframe of the DA market equals

to the timeframe of the data set applied. The initial load values are set the same as the

reference loads. In addition, we set maximum loads to 1.0 and minimum loads to 0.0.

Given the generation bids in Table 4.2.1, we consider two types of major

generation-side contingencies. The first type of contingency is sudden change of

generation costs. This type of contingency happens when fuel cost changes, generator

maintenance takes place and suppliers game in the bidding process. The second type of

contingency is sudden loss of generation. This type of contingencies happens when

generators break down, run out of fuel and are lack of renewable energies, for example,

wind turbine cannot generate power when wind stops blowing. Since contingencies

usually only happen to part of generation units in a power system, we assume the two

types of contingencies happen on the generation unit G2. Therefore, G2's capacity and

marginal cost are no longer time-invariant. Figure 4.4.1 to figure 4.4.4 plot the changes of

G2's capacity and marginal cost due to these types of contingencies. In addition, as

mentioned in Section 4.1, because network constraints are not considered in the

numerical example settings for the data analyzing purpose, the transmission

contingencies are not examined in this section.
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3
Hours

Fig. 4.3.1 G2's generation cost. G2's marginal cost is bid as 10.7. This marginal cost is
forecasted to suddenly decrease at Hour 2 to 10.49 and increase at Hour 2 to 11.02.
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Fig. 4.3.2 G2's generation capacity. G2's capacity is bid as 0.7. This capacity is
forecasted to be lost (i.e. drop to 0.0) at Hour 2.
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Fig. 4.3.3 G2's generation cost. G2's marginal cost is bid as 10.7. This marginal cost is
forecasted to suddenly increase at Hour 5 and Hour 10 to 12.84 and 14.98, and decrease
at Hour 10 to 8.56.
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Fig. 4.3.2 G2's generation capacity. G2's capacity is bid as 0.7. This capacity is
forecasted to be lost (i.e. drop to 0.0) at Hour 7 and Hour 19.
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Table 4.4.1 presents the five period bidding results of the proposed bidding

mechanisms under these two contingencies. Table 4.4.2 and Table 4.4.3 presents the

same numerical examples under the inelastic demand bidding mechanism and the SHB.

Case 1 shows the bidding results when the system has G2's cost suddenly

changed at Hour 2 and Hour 4. Under all the three bidding mechanisms, G2 is the

marginal unit at all the hours. Therefore, the market clearing prices of the three bidding

mechanisms are equal to G2's marginal cost. The bidding results of the three bidding

mechanisms differ in their load profiles and generation dispatch schedule.

As shown in Table 4.4.2, under the inelastic demand bidding mechanism, the load

profile is constant under the time-varying prices. End users' electric use is the same under

the peak price as under the off-peak price, which increases end-user consumption cost.

Moreover, according to equation (24), this bidding result reduces the social welfare value.

As shown in Table 4.4.3, under the SHB, end users reduce their electric use, since the

market clearing prices are higher than the reference prices at all the hours. End users

increase their electric use at low prices and reduce their electric use at high prices.

However, inter-temporal load shifting is ignored in this bidding mechanism. For this

reason, at all the hours the end-user electric use is reduced, which in turn leads to the

reduction of end-user utility and social welfare according to equation (18) and equation

(24). The bidding results of these two bidding mechanisms deviate from the actual market

equilibrium.

The bidding result of the proposed bidding mechanism gives the optimal solution

under the given end-user type, as shown in Table 4.4.1. Since the market clearing prices

are higher than the reference prices, the total end-user electric use is reduced. End users

increase their electric use at low prices and reduce their electric use at high prices.

Meanwhile, the end-user electric use is increased above the reference load at the low-

priced hour due to the load shifting from other hours. In this bidding result, the end-user

electric use is controlled by time-varying prices to reduce total generation cost. Moreover,

sufficient end user electric use is guaranteed by inter-temporal load shifting to ensure the

end-user utility level.
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TABLE 4.4.1 Bidding results of the proposed bidding mechanism under system contingencies (5-period)
No. Load Profile Market Clearing Price Generation Dispatch Schedule
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TABLE 4.4.2 Bidding results of the demand inelastic bidding mechanism under system contingencies (5-period)

No. Load Profile Market Clearing Price Generation Dispatch Schedule
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TABLE 4.4.6 Bidding results of the Single Hourly Bidding (SHB) under system contingencies (5-period)
No. Load Profile Market Clearing Price Generation Dispatch Schedule
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TABLE 4.4.4 Bidding results of the proposed bidding mechanism under system contingencies (24-period)

No. Load Profile Market Clearing Price Generation Dispatch Schedule
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TABLE 4.4.5 Bidding results of the inelastic demand bidding mechanism under system contingencies (24-period)
No. Load Profile Market Clearing Price Generation Dispatch Schedule
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Case 2 shows the bidding results when the system suddenly loses G2 at Hour 2.

The market clearing prices of all the three bidding mechanisms increase at Hour 2 due to

this contingency.

As shown in Table 4.4.2, under the demand inelastic bidding mechanism, the end

users have the same electric use at Hour 2 as at the other hours. In order to satisfy this

demand, the most expensive generation unit, G3, is dispatched at Hour 2, which pushes

the market clearing prices to a higher level. This bidding result will increase the end-user

consumption cost, increase the total generation cost and thus reduce the social welfare

according to equation (24). As shown in Table 4.4.3, under the SHB, the end users reduce

their electric use at all the hours since the market clearing prices are higher than the

reference price. Moreover, they consume the least electricity at Hour 2 when the price is

peaking. This load profile makes G2 as the marginal units at all the hours, which saves

the total generation cost compared to the bidding results of the inelastic demand bidding

mechanism. However, the inter-temporal load shifting effects are ignored here, and thus

the end-user utility is reduced according to equation (18).

The bidding result of the proposed bidding mechanism is presented in Table 4.4.1.

The end users reduce their electric use since the market clearing prices are higher than the

reference prices. They consume the least electricity at the peak hour and shift the electric

use to the other hours. To satisfy this demand, G2 is the marginal unit at all the hours. In

this bidding result, the end-user electric use is controlled in the way that saves the total

generation cost, maintain the end-user utility above a certain level and thus gives a higher

social welfare. Moreover, the market clear prices of Hour 2 under the three bidding

mechanisms are 11.48 (Table 4.4.1), 12.6 (Table 4.4.2) and 11.6 (Table 4.4.3). It shows

that under contingencies, the proposed bidding mechanism reduce the price spike most

compared to the two traditional bidding mechanisms. Section 4.6 will analyze this effect

in HA market when final payments are settled. Notice that the market clearing prices as

11.48 and 11.6 are not any generation units' marginal cost. These market clearing price

are obtained due to demand clears the market at Hour 2. Section 4.5 will investigate into

this problem in detail.

Table 4.4.4 to Table 4.4.6 provide 24-period bidding results of the proposed

bidding mechanism together with those of the two traditional bidding mechanisms under
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the two contingencies. The analysis of these examples is identical to that of the 5-period

results, and thus is not repeated here. Some of the examples are non-convergent, and the

results give their oscillation range. Section 4.5 will show how to derive the market

equilibriums of these results.

4.5 Examples under the System with Renewable

Energy in DA and HA markets
Section 4.2 to Section 4.5 examines the performance of the proposed bidding mechanism

in the DA market. This section shows how the proposed bidding mechanism in the HA

market. The 24-period data set is used as the retailers' bids. Figure 4.2.2 depicts the

reference points. The source of the two data sets is introduced in Section 4.1.

A wind turbine is introduced to the generation side in the simulation system,

which contains three generation units and three identical retailers. The wind turbine is

modeled by G2, and thus G2's marginal cost is set as 0.0. The wind capacity is modeled

with Weibull distribution function:

f(x; A, k) = k) e) x 0,

where k = 7 and A = 1.

The operation procedure of the HA market is similar to that of the RT market, which is

introduced in Section 3.2. In this section, the HA market's timeframe equals to 24,

representing 24 hours in a day. The bidding process is held hourly, and thus the market

are cleared 24 times when a whole run of the HA market is finished. In every hourly

bidding process, no new bids are required from the suppliers or the retailers. However,

both the generation bids and retailers' bids are updated.

Before every hourly transaction, generation bids are updated with the wind

capacity's forecast for all the future hours in the timeframe. The updated wind capacity is

used as G2's capacity of the generation bids at that hour. The "wind capacity" column of

Table 4.5.1 shows the wind capacity's forecast in every hour. The rest of the generation

bids remain the same as in Table 4.2.1.

139



The retailers' bids are updated hourly as well. Since the hourly biddings only

transact the electric use in the further hours in the timeframe, the PEM is updated as the

right bottom square sub-matrix of the original PEM. For example, if the HA market takes

place in Hour 12, then the PEM at that hour is the sub-matrix containing entries of

column 12 to 24 and row 12 to 24 from the original 24 x 24 matrix. Figure 4.5.1

illustrates this idea.

H24

PEM "H
H2

H1

Fig. 4.5.1 Updated PEM for hourly bidding process in the HA market.

Table 4.5.1 shows the hourly bidding results of the proposed bidding mechanism

in the system described above. This table is labeled as "before processed" because

oscillation ranges of the non-convergent results are presented instead of the final market

equilibrium. In addition, since the hourly biddings only transact the electric use in the

future hours, the data of the hours before the transaction hour are left as the reference

points of the retailers. Table 4.5.2 shows the hourly bidding results that have the past

hours' data updated and all the market equilibrium settled. Section 4.6 will explain in

detail how to settle the market equilibriums of the non-convergent cases.

Table 4.5.2 shows that although the market clearing price is lower than the

reference prices at most of the hours, the end-users have a lower electric consumption

level compared to the reference loads. It is because load shifting to other hours cancels

the electric use increment due to a lower price. For the same reason, end users reduce
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their electric use at peak hours and shift the load to the other hours. Table 4.5.3 shows the

hourly bidding results of the SHB. It shows that the end users increase their electric use

since the market clearing prices are lower than the reference prices. However, the shifting

effects are ignored in the SHB.
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TABLE 4.5.1 The bidding results of the proposed bidding mechanism with renewable energy in the HA market (Before Processed)

No. Load profile Market Clearing Price Generation Dispatch Schedule Wind Capacity
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TABLE 4.5.2 The bidding results of the proposed bidding mechanism with renewable energy in the HA market (After Processed)
No. Load profile Market Clearing Price Generation Dispatch Schedule Wind Capacity
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TABLE 4.5.3 The bidding results of the Single Hourly Bidding (SHB) with renewable energy in the HA market
No. Load Profile Market Clearing Price Generation dispatch schedule Wind Capacity
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The price settlement rule in the HA market is similar to the two-settlement system

introduced in Section 3.3. However, since the HA market is different from the RA market

in the sense that it is a forward market, the payment settled in an hourly bidding is not the

final payment. This section calculates the hourly payment as:

Pay1 = p, x P, (53a)

and

Payt = Payt_1 + Pt x (Pt - Pt-1), (53b)

where

Therefore, the

Pay2 4 = P1 x

Payt  the payment at Hour t;

Pt the market clearing price at Hour t;

Pt the power bid to be generated or consumed in Hour t

according to if Payt is the payment to the suppliers or from

the retailers.

final payment after the whole of the HA market is:

P1 + P2 X (P 2 - P1 ) + "' + pt X Pt - Pt- 1) + "' + P24 X (P24 - P23)

Figure 4.5.3 and figure 4.5.4 show the final payments from the retailers and to the

suppliers respectively based on the above equation. The two figures show that the

payment increases when wind capacity is high such as at Hour 5 and Hour 14, see figure

4.5.2. This is because the proposed bidding mechanism encourages electricity

consumption when the system has sufficient renewable energy supply by considering the

inter-temporal shifting effects. This consumption pattern takes advantage of zero-

marginal-cost renewable energy and reduces the RT balancing cost. Moreover, these final

payments show that the proposed bidding mechanism reflects the added value of the

renewable energy to the system. These benefits are not observed in the SHB, as its final

payments to the suppliers and from the retailers shown in figure 4.5.5 and figure 4.5.6.
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Fig. 4.5.2 The measured wind capacity after the 24 hourly biddings in the HA market
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Fig. 4.5.3 The final payment from the retailers in the HA market under the proposed
bidding mechanism
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Fig. 4.5.4 The final payment to the suppliers in the HA market under the proposed
bidding mechanism

5.5

5

4.5

0E 4

3.5

3

2.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hours

Fig. 4.5.5 The final payment from the retailers in the HA market under the SHB
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Fig. 4.5.6 The final payment to the suppliers in the HA market under the SHB
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4.6 Examples of Non-convergences
This section gives numerical examples of searching for market equilibriums of the non-

convergent bidding results of the proposed bidding mechanism. Section 4.2 to Section 4.5

gives numerical examples under various end-user types and system statuses. Some of

these examples have results that oscillate between several values and thus are non-

convergent. Section 3.4 explains the two causes for the non-convergences: the supply

curve's relative slope is steeper than the demand curve's slope and demand clears the

market. In addition, Section 3.4 proposes an improved market interaction algorithm to

find market equilibriums of these two non-convergent cases. This section gives four

numerical examples of the two non-convergent cases. It also shows how the market

equilibriums are found following the proposed algorithm.

In the four examples presented in this section, the first two examples show the

non-convergences directly caused by demand clearing the market or steep supply curve's

relative slope. The other two examples show the non-convergences caused by shifting

effects resultant from other non-convergent hours in the timeframe. The four examples

are collected from the examples presented in Section 4.2 to Section 4.5. Thus, they have

different simulation settings in terms of end-user types, system statuses and sub-market

types. The simulation setting details of these examples will not be repeated in this section.

In addition, for analysis convenience, only the load profile and the market clearing price

of the bidding results are presented in this section. Detailed simulation settings and

bidding results of the four examples can be found in their first presentations if interested.

Non-convergence caused by demand clears the market

Figure 4.5.1 and figure 4.5.2 give the example of non-convergence caused by

demand clearing the market at a single hour. This example is from the Hour 10's bidding

results in Section 4.5, and thus we only need to find the market equilibrium for the hours

after Hour 10.

Figure 4.5.2 shows that due to the lack of wind generation capacity, the market

clearing price at Hour 12 oscillates between the marginal cost of G3 (12.6) and the

marginal cost of Gl (9.8). This price oscillation results in load profile oscillation, shown

in figure 4.5.1. Since G2 is a wind generation unit in the system and has a marginal cost
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as 0.0 at all the hours, the bidding results' non-convergence is caused by demand clearing

the market based on the algorithm in figure 3.3.11. We follow the demand curve

searching algorithm in Section 3.4.2 to find the market equilibrium of this example:

1. Denote Hour 12 as the hour HcDMwhen demand clears the market; Denote all

the other hours in the timeframe as Ho;

2. Set P12 as variable and dl2 as 1/3, thus the total demand of the three retailers

at Hour 12 equals the capacity of GI as 1.0; Set the price at Ho as their

convergent value 9.8 and the demand at Ho as variables;

3. Substitute all parameters and variables into equation (15), where the PEM is

the of real-world end-user type;

4. By solving equation (15) in step 3, we obtain the demand and price at all the

hours. Because the obtained P12 E (9.8, 12.6) and the demand at Ho is less

than 1/3, the solution is accepted.

The obtained demand and price are plotted in figure 4.5.3 and figure 4.5.4. Figure

4.5.4 shows that the curtailing premium equals to P12 - 9.8, which prevents end users

consuming more electricity and increasing the system's marginal cost to 12.6. Notice that

the demand and price before Hour 10 are derived from bidding results from the previous

HA markets.
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Fig. 4.5.1: The non-convergent load profile caused by demand clears the market at a

single hour.
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Fig. 4.5.3: The load profile at the market equilibrium. The market equilibrium is

derived from the non-convergent bidding result caused by demand clears the market at a

single hour.
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equilibrium is derived from the non-convergent bidding result caused by demand clears

the market at a single hour.
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Non-convergence caused by steep supply curve's relative slope

Figure 4.5.5 and figure 4.5.6 give the example of non-convergence caused by

demand clearing the market at a single hour and steep supply curve's at all the other

hours. This example is from the bidding results when the system loses G2's capacity at

Hour 2, in Section 4.3.

Figure 4.5.6 shows that the market clearing prices oscillates between Gl's

marginal cost (9.8) and G3's marginal cost (12.6). This price oscillation results in load

profile oscillation, shown in figure 4.5.5. At Hour 2, the system loses G2's capacity, and

the only two available generation units are Gl and G3. Therefore, the algorithm detects

the price oscillation at this hour is caused by demand clearing the market. However, the

system has all the three generation units available at all the other hours. Based on the

improved market interaction algorithm, the price oscillations at all these hours are caused

by the steep supply curve's relative slope. Therefore, the algorithm resets the market

clearing prices at all the hours except Hour 2 to 10.7, which is the marginal cost between

9.8 and 12.6 in the system. Afterwards, it searches on the demand curve for the market

equilibrium at Hour 2 according to the algorithm in Section 3.4.2:

1. Denote Hour 2 as the hour HcDMwhen demand clears the market; Denote all the

other hours in the timeframe as HDc;

2. Set P2 as variable and d2 as 1/3, thus the total demand of the three retailers at

Hour 2 equals the capacity of Gl as 1.0; Set the price at Ho as the reset value 10.7

and the demand at Ho as variables;

3. Substitute all parameters and variables into equation (15), where the PEM is the

of real-world end-user type;

4. By solving equation (15) in step 3, we obtain the demand and price at all the

hours. The obtained P12 E (9.8, 12.6), and the demand at H5-a are in(0.33, 0.57),

which means G2 is the marginal unit at all the hours except at Hour 2. Therefore,

the solution is accepted.

The obtained demand and price are plotted in figure 4.5.7 and figure 4.5.8.
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Fig. 4.5.5 The non-convergent load profile caused by steep local relative slope of the
supply curve.

Fig. 4.5.6: The non-convergent market clearing price caused by steep local relative
slope of the supply curve.
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Fig. 4.5.7 The load profile of the market equilibrium.
derived from figure 4.5.5 and figure 4.5.6

The market equilibrium is

Fig. 4.5.8 The market clearing price of the market equilibrium. The market
equilibrium is derived from figure 4.5.5 and figure 4.5.6
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Non-convergence caused by demand clears the market and shifting effects

Figure 4.5.9 and figure 4.5.10 give the example of non-convergence caused by

demand clearing the market and shifting effects. This example is from the Hour 13's

bidding results in Section 4.5, and thus we only need to find the market equilibrium for

the hours after Hour 13.

Figure 4.5.10 shows that due to the lack of wind generation capacity, the market

clearing prices at Hour 13 and Hour 14 oscillate between the marginal cost of G3 (12.6)

and the marginal cost of G1 (9.8). This price oscillation results in load profile oscillation,

shown in figure 4.5.11. Since G2 is a wind generation unit in the system and has a

marginal cost as 0.0 at all the hours, the bidding results' non-convergence is caused by

demand clearing the market based on the algorithm in figure 3.3.11. However, the price

oscillation at Hour 13 can be caused by demand clearing the market at that hour, or it can

be caused by the shifting effects from Hour 14 when the demand clears the market. The

same statement applies to the price oscillation at Hour 14 as well. Thus, we need to

consider all these non-convergence causes when search for the market equilibrium on the

demand curve:

1. Consider three possible causes for the non-convergence: demand clears

the market at Hour 13 and at Hour 14, demand clears the market at Hour

13 and shifting effects from Hour 13 cause oscillation at Hour 14, and

demand clears the market at Hour 14 and shifting effects from Hour 14

cause oscillation at Hour 13.

2. According to the three possible causes, denote Hour 13 or Hour 14 as the

hour HCDM when demand clears the market or H o- when non-

convergence is caused by shifting effects; Denote all the other hours in the

timeframe as Ho;

3. Set PDCM as variable and HDcM as 1/3, thus the total demand of the three

retailers at HDCM equals the capacity of G1 as 1.0; Set the price at Hy-m as

their oscillating value 9.8 or 10.7 and the demand at Ho-cm as variables;

Set the price at Ho as their convergent value 9.8 and the demand at Ho as

variables;
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4. Substitute all parameters and variables into equation (15), where the PEM

is the of real-world end-user type;

5. By solving equation (15) in step 3, we obtain the demand and price at all

the hours. Check if the obtained PDcM e (9.8,12.6) and the demand at

Hf-k is less than 1/3. The solution is accepted, when the condition is

satisfied.

After trying all the three possible causes, the solution is feasible when demand clears

the market only at Hour 13. The price oscillation at Hour 14 is caused by the shifting

effects from the non-convergence at Hour 13. The obtained demand and price are

plotted in figure 4.5.11 and figure 4.5.12. Figure 4.5.12 shows that the curtailing

premium equals to P13 - 9.8, which prevents end users consuming more electricity

and increasing the system's marginal cost to 12.6. Notice that the demand and price

before Hour 12 are derived from bidding results from the previous HA markets.
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Fig. 4.5.9: The non-convergent load profile caused by demand clears the market and

shifting effects.
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Fig. 4.5.10: The non-convergent market clearing price caused by demand clears the
market and shifting effects.
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Fig. 4.5.11: The load profile of the market equilibrium. The market equilibrium is
derived from figure 4.5.9 and figure 4.5.10.
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Fig. 4.5.12 : The market clearing price of the market equilibrium. The market
equilibrium is derived from figure 4.5.9 and figure 4.5.10.

Non-convergence caused by demand clears the market at multiple hours

Figure 4.5.13 and figure 4.5.14 give the example of non-convergence caused by

demand clearing the market at multiple hours. This example is from the Case 2's bidding

results in Section 4.3.

Figure 4.5.14 the market clearing prices at Hour 2, Hour 7 and Hour 24 oscillate

between the marginal cost of G2 (10.7) and the marginal cost of GI (9.8). This price

oscillation results in load profile oscillation, shown in figure 4.5.13. Since GI and G2 are

two generation units that have the marginal cost next to each other, the bidding results'

non-convergence is caused by demand clearing the market based on the algorithm in

figure 3.3.11. However, for each hour when the price oscillates, the non-convergence can

be caused by demand clears the market at that hour or by shifting effects from other hours

when demand clears the market. Based on the first two steps of the demand curve

searching algorithm in Section 3.4.2, all the parameter settings of Hour 2, Hour 7 and

Hour 24 under all the non-convergence's causes are listed in Table 4.4.1:
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TABLE 4.4.1 Parameters of Hour 2, Hour 7 and Hour 19 (H2, H7, H19)
No. Load Price No. Load Price

1 (0.33,0.0.33.33) (v, v, v) 2 (0.33, 0.33, v) (v, v, 9.8)
3 (0.33,0.33, v) (v, v, 10.7) 4 (0.33, v, 0.33) (v, 9.8, v)
5 (0.33, v, 0.33) (v, 10.7, v) 6 (v, 0.33, 0.33) (9.8, v, v)
7 (v, 0.33, 0.33) (10.7, v, v) 8 (v, v, 0.33) (9.8, 10.7, v)
9 (v, 0.33, v) (9.8, v, 9.8) 10 (0.33, v, v) (v, 10.7, 9.8)
11 (v, v, 0.33) (10.7, 9.8, v) 12 (v, 0.33, v) (10.7, v, 10.7)
13 (0.33, v, v) (v, 9.8, 10.7) 14 (v, v, 0.33) (9.8, 9.8, v)
15 (0.33, v, v) (v, 9.8, 9.8) 16 (0.33, v, v) (v, 10.7, 10.7)
17 (v, v, 0.33) (10.7, 10.7, v) 18 (v, 0.33, v) (10.7, v, 9.8)
19 (v, 0.33, v) (10.7, v, 9.8)

*v denotes the variable to be decided.

For each non-convergence causes listed in Table 4.4.1, substitute its parameter

settings into equation (15), where the PEMs' types are the early end users, forward

shifting end users and real-world end users. By solving equation (15) in step 3, we obtain

the demand and price at all the hours. Check (1) if the obtained PDcM E (9.8,10.7) and

(2) dt-c < 1/3 if p-- = 9.8 or dD-c- E (0.33,0.56) if pD--M = 10.7 . The solution is

accepted, when the condition is satisfied.

After trying all the three possible causes, the solution is feasible when demand

clears the market at all the three hours H2, H7 and H24. The obtained demand and price

are plotted in figure 4.5.15 and figure 4.5.16. Figure 4.5.15 shows that the curtailing

premium equals to PDCM - 9.8, which prevents end users consuming more electricity and

increasing the system's marginal cost to 10.7.
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Fig. 4.5.13: The non-convergent load profile caused by demand clears the market at

multiple hours.
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Chapter 5

Conclusion
In this thesis, we propose a demand responsive bidding mechanism which considers end-

user response with inter-temporal load shifting in wholesale electricity pools. Bidding

rules, bidding acceptance rules and settlement rules are defined for this bidding

mechanism. PEMs are used to model all end-user response types. Bidding results

obtained from the proposed bidding mechanism are closer to the actual market

equilibrium.

Mathematical models of the proposed bidding mechanism are formulated in an

optimization problem. By deriving the closed-form solution of this problem, we show

that the pricing structure of the proposed bidding mechanism is the same as the spot

pricing structure proposed in Schweppe's work. In addition, we show that the shadow

prices of the generation and demand inter-temporal conditions are included in the market

clearing price under the proposed bidding mechanism.

Sensitivity analysis of the proposed bidding mechanism are conducted under four

disturbances: changing in generation cost, changing in generation capacity, changing in

transmission limits and changing in demand response programs. The condition of the

same bidding acceptance under these four disturbance types are derived.

In addition, we give a full classification of the PEMs based on end-user response

types. Furthermore, we point out the factors affecting the PEM's establishment: affecting

periods, affected periods and incentive timings of demand response programs. We also

present several methods of estimating the PEMs.

To implement the proposed bidding mechanism, we develop an improved

algorithm based on the market interaction algorithm in David's work. This improved

algorithm can detect the two causes for market non-convergence: demand clears the

market and steep local relative slope of the supply curve, where the second condition and

the concept of relative slope is defined originally in this work. By applying this improved

algorithm, market equilibriums are found in the previous non-convergent cases.
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The proposed bidding mechanism's advantages over the traditional bidding

mechanisms are shown by numerical examples in DA and HA markets. It shows that the

bidding results of the proposed bidding mechanism are closer to the actual market

equilibriums. For this reason, applying this bidding mechanism can avoid problems such

as low market efficiency, high RT market balancing cost and low reliability.

Moreover, under contingencies, the proposed bidding mechanism guarantees

sufficient end user electric use by considering inter-temporal load shifting to ensure the

end-user utility level. In addition, it reduces the price spike most compared to the two

traditional bidding mechanisms.

In systems with renewable energy, the proposed bidding mechanism encourages

electricity consumption when the system has sufficient capacities and discourages the

electricity consumption by giving proper market clearing price. The resultant

consumption pattern takes advantage of zero-marginal-cost renewable energy and

reduces the RT balancing cost. In addition, the final payments obtained under the

proposed bidding mechanism reflect the added value of the renewable energy to the

system.
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Appendix A

Numerical Examples' Case Description
TABLE 1: Reference Case

Generation Non-renewable power plants
Upper capacity constraint 0 5 Y (t) 5 Kj

Transmission No constraint
PEM Only with self-elasticity I Single Hourly Bid
Contingency No contingency
Market type DA market
Market equilibrium Generation clears the market

TABLE 2: Categories Description

Generation a. non-renewable plants
b. renewable plants
Constraints:

c. only upper capacity constraint 0 < Yj (t) 5 Ki
d. positive lower capacity Kj 5 Yj(t) < Kj and Kj > 0
e. ramp-up and ramp-down constraints
f. least on/offline time

Transmission a. no network constraints
b. power flow constraints of transmission lines
c. current flow constraints of transmission lines
d. voltage level constraints of buses
e. phase difference constraints of buses

PEM a. curtailable load f. flexible end users
b. early end users g. real-world end users
c. late end users h. distributed generation
d. forward shifting end users i. on-site storage
e. backward shifting end users

Contingency a. no contingency
b. sudden increment in one generation unit's cost
c. loss of a transmission line in a certain hour
d. loss of a generation unit in a certain hour

Market type a. DA market only
b. DA and RT market in sequence

Market equilibrium a. generation clears the market
b. demand clears the market
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TABLE 3: Simulated Cases
Case Categories No. Generation Transmission PEM Contingencies Market Market

Equilibrium
Reference case 1 a,c a a a a a
PEM variations 2 a,c a b a a a

3 a,c a c a a a
4 a,c a d a a a
5 a,c a e a a a
6 a,c a f a a a
7 a,c a g a a a
8 a,c a h a a a
9 a,c a i a a a

Demand 10 a,c a g a a b
clearing market
Contingencies 11 a,c a g b a a

12 a,c a g c a a
13 a,c a g d a a

Renewable 14 b,c a g a b a
energy

Comprehensive 15 b,d,e b h,d,g b b a
case
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Appendix B

Code of the Numerical Examples

Generating 24 x 24 PEMs for the Ten End-User Types

% PEM generation 24 X 24
% self-elasticity 0.02
% PEMO curtailable end users PEM1
% PEM2 late end users PEM3
end users
% PEM4 backward shifting end users PEM5
users
% PEM6 real world end users

early end users
forward shifting

flexible end

PEMO = -0.02.*eye(24);

for i = 1:24
% PEM1

if i <= 7

PEM1(:,i) = 0.02/6.*[ones(7,1);zeros(17,1)];
else

PEM1(:,i) = 0.02/7.*[ones(7,1);zeros(17,1)];
end

PEMl(i,i) = -0.02;
% PEM2

if i >= 17

PEM2(:,i) = 0.02/6.*[zeros(17,1);ones(7,1)];
else

PEM2(:,i) = 0.02/7.*[zeros(17,1);ones(7,1)];
end

PEM2(i,i) = -0.02;
% PEM3

if i == 24
PEM3(:,i)= zeros(24,1);

else
PEM3(:,i) = (0.02/(24-i)).*[zeros(i,l);ones(24-i,l)];

end
PEM3(i,i) = -0.02;

% PEM4
if i == 1

PEM4(:,i) = zeros(24,1);
else

PEM4(:,i) = (0.02/(i-l)).*[ones(i,l);zeros(24-i,l)];
end
PEM4(i,i) = -0.02;
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% PEM5
PEM5(:,i)
PEM5(i,i)

% PEM6

for j = 1

= 0.02/23.*ones(24,1);

= -0.02;

:24
if j == i

PEM6 (j,i) = -0.02;
else

PEM6(j,i) = 0.02/((abs(i-j)*1.l)^2+1);
end

end
end

% using weibull function to generate wind coefficient. * Every running
of
% 'random' function produces different results.
% WindCo = ones(24,24);
% for i = 1:24

% WindCo(:,i) = random('wbl',l.*ones(24,1),7.*ones(24,1));
% if i > 1
% WindCo(l:i-l,i) = WindCo(l:i-l,i-l);
% end
% end

load('THS_windco.mat','WindCo','-mat')

Running the Proposed Bidding Mechanism in the DA Market with the Five-Period
Data Set

function IAS09_0310 b nwr
emgen_THS24
% PEM[10] = Emload2;
% PEM[37] = Emload8;
% PEM[14]= Emload4;

PEM[8)= -0.2.*eye(5);
PEM{2} = PEM{1};
PEM(3} = PEM{1};
loop = 10;

Pd = zeros(5,3);
Qd = zeros(5,3);
% Qref = [0.089 0.0456
% 0.3329 0.3671
% 0.2231 0.6802
% 0.2326 0.6655
% 0.3078 0.7959
%Pref = [11.2*ones(5,1)

0.0559;
0.0897;
0.0499;
0.048;
0.0474];
10.5*ones(5,1) 13.2*ones(5,1) ;

%===ref 0304 value
%Pref = [11.6 9.8 10.7 14.5 12.6];
%Qorg = [0.0989 0.0456 0.0799;0.2497 0.3059 0.0523;0.2479 0.6802
0.0712;0.2326 0.6655 0.048;0.2565 0.6632 0.0474];
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%===ref THS 1 value===
Prefl = ones(5,1)*10.5; %RT H5
Pref2 = ones(5,1)*10.4;
Pref3 = ones(5,1)*10.3;
Pref = [Pref2 Pref2 Pref2];
%Qref = [0.554.*ones(1,3);0.4967.*ones(1,3); 0.531712.*ones(1,3);
%0.5 2 7 694.*ones(1,3);0.557541.*ones(1,3)]; %RT H5
Qrefl = ones(5,1)*0.57;
Qref2 = ones(5,1)*0.5;
Qref3 = ones(5,1)*0.42;
Qref = [Qref2 Qref2 Qref2];

%Qmin = [0.9 1 0.7];
%Qmax = [1 1 1];

Qorg = Qref;

for kk = l:loop
if kk ==I

Ch = Qorg;
read_in(Ch);
[ps,mcp] = call_ed;

%RT market
mcp = [mcp(1);9.8;10.1279;9.
[nhr,nsup] = size(ps);

8;9.8;mcp(end)];

else
read_in(Ch); %update the datafile
[ps,mcp] = call_ed;

%RT market
% mcp = [mcp(1);9.8;10.1279;9.8;9.8;mcp(end)];

end
ps_rec{kk} = ps;
ps = ps(2:nhr,:);
mcp_rec{kk} = mcp;
mcp = mcp(2:nhr,:);
for i = 1:3

Pd(:,i) = mcp - Pref(:,i);
Qd(:,i) = PEM{i} * Pd(:,i);
Q(:,i) = Qd(:,i) + Qref(:,i);

% Ql(:,i) = Qorg(:,i).*Qmin(i);
% Q2(:,i) = Qorg(:,i).*Qmax(i);

end
% Q = max(Q, Q1);
% Q = min(Q, Q2);

Ch = Q;
ch_rec{kk+l)} = Q;

end
ch_rec(l) = Qref;

for 11 = l:loop
if 11 ==1
figure
hl = axes;
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hold on
plot(ps_rec{l} (2:nhr,:))
figure
h2 = axes;
hold on
plot(mcp_rec{l}(2:nhr,:))
figure
h3 = axes;
hold on
plot(ch_rec{i}(1:nhr-l,:))
else

% plot(hl,ps_rec{ll}(2:nhr,:),
plot(hl,ps_rec{ll}(2:nhr,l),'
plot(hl,ps_rec{ll}(2:nhr,2),'
plot(hl,ps_rec{ll}(2:nhr,3),
plot(h2,mcp_rec{ll}(2:nhr,:),
plot(h3,ch_rec{ll} (l:nhr-l,l)

','LineWidth' ,6, 'Color','magenta')
plot(h3,chrec{ll} (l:nhr-1,2

','LineWidth',6,'Color','yellow')
plot(h3,ch_rec{ll} (:nhr-l,

','LineWidth' , 6, 'Color','cyan')
end

'LineWidth',6)
-','LineWidth',6,'Color','blue')
--','LineWidth',6,'Color','green')

'.','LineWidth',6,'Color','red')
'LineWidth',6,'Color','green')
I-

end
disp('end of loop')
saveas(hl,'J:\MS Thesis\Thesis\Chapter 4_figures\13_GSHB.fig')
saveas(h2,'J:\MS Thesis\Thesis\Chapter 4_figures\13_pSHB.fig')
saveas(h3,'J:\MS Thesis\Thesis\Chapter 4_figures\13_DSHB.fig')
fclose('all')
%% input interface
function read_in(Ch)

%write into a temporary file
fid00 = fopen('psatdata_THS_ll.gms','r'); %initialize

fidll = fopen('psatdata.gms','w+'); %create a temporary file

frewind(fid00);
while 1

tOO = fgetl(fid00);
% tll = fgetl(fidll);

if strcmp(t00,'$kill Ch'),
break

else
fprintf(fidll,'%s\n',tOO);

end
end
%tll = fgetl(fidll); %point to the next 1
fprintf(fidll,'$kill %s\n','Ch');
fprintf(fidll,'parameter %s /\n','Ch');
[nH,nLd] = size(Ch);
for j = l:nLd,

fprintf(fidll,'%s%s.%d %f\n','H',
for i = l:nH,

fprintf(fidll,'%s%d.%d %f\n','H',
% tll = fgetl(fid00);

end
end
fprintf(fidll,'/;\n');

ine of 'parameter Ch'

'0',j,Ch(l,j));

i,j,Ch(i,j));
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fprintf(fidll,'%s\n','$offempty');
%write back
fid00 = fopen('psatdata_THSl.gms','w+');
fidll = fopen('psatdata.gms','r'); %create a temporary file
frewind(fidll);
while 1

tll = fgetl(fidll);
if strcmp(tll,'$offempty');%0429

break
else

fprintf(fid00,'%s\n',tll);
end

end
fprintf(fid00,'%s\n','$offempty');
fclose(fidll);
fclose(fid00);

function varargout = call_ed
status = 0;
tO = clock;
[status,result] = system(['gams ',
disp([' GAMS routine completed in
if status

disp(result)
disp('Error!!')

return
end
nout = 0;
EPS = eps;
clear psatsol
psatsol
if nout < nargout

for i = nout+l:nargout
varargout{i} = [];

end
end

if nout > nargout

varargout(nargout+l:nout)
end

'fm_THS_l.gms']);
',num2str(etime(clock,tO)),' s'])

= [];

Running the Proposed Bidding Mechanism in the DA Market with the 24-Period Data
Set

function IAS09_THS24
emgenTHS24
loop = 10;
PEM{1} = PEMO;
PEM{2} = PEMO;
PEM{3} = PEMO;
% Timeframe = 24
Pd = zeros(24,3);
Qd = zeros(24,3);
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% Timeframe = 24

% Qref = [0.089 0.0456 0.0559;
% 0.3329 0.3671 0.0897;
% 0.2231 0.6802 0.0499;
% 0.2326 0.6655 0.048;
% 0.3078 0.7959 0.0474];
%Pref = [11.2*ones(5,1) 10.5*ones(5,1) 13.2*ones(5,1)];

%===ref 0304 value
%Pref = [11.6 9.8 10.7 14.5 12.6];
%Qorg = [0.0989 0.0456 0.0799;0.2497 0.3059 0.0523;0.2479 0.6802
0.0712;0.2326 0.6655 0.048;0.2565 0.6632 0.0474];

%===ref THS 1 value===
%Pref = [9.8 10.1279 9.8 9.8 9.8]'; %RT H5

%Qref = [0.554.*ones(1,3);0.4967.*ones(1,3); 0.531712.*ones(1,3);
%0.527694.*ones(1,3);0.557541.*ones(1,3)]; %RT H5
%Qorg = 0.5.*ones(5,3);

% Prefl = 10.5.*ones(24,1);
Pref2 = 10.4.*ones(24,1);
% Pref3 = 10.3.*ones(24,1);
Prefl = Pref2;

Pref3 = Pref2;
Pref = [Prefl Pref2 Pref3];

% Qrefl = [0.7456
% 0.7386
% 0.9939
% 0.9033
0.7045]'/2;%nyc/2
Qref2 = [0.3255
0.3027 ...

0.7059
0.8090
0.9961
0.8572

0.6802
0.8748
0.9980
0.8400

0.6655
0.9297

1.0000
0.8063

0.6632
0.9611

0.9936
0.7600

0.6885...
0.9852...

0.9644...

0.3021 0.2890 0.2815 0.2793 0.2880

0.3371 0.3758 0.4136 0.4431 0.4669 0.4855
0.4951 ...

0.4992
0.4222 ...

0.3941
% Qref3 = [0.7269
% 0.6794
% 0.9656
% 0.9125

0.5000 0.4981 0.4850 0.4559 0.4261

0.3523
0.6798
0.7530
0.9886
0.8682

0.3099]';
0.6481
0.8273
0.9917
0.8701

%long island
0.6238
0.8895
1.0000
0.8160

0.6165
0.9373
0.9908
0.7364

0.6652]'/2;%dunwod/2
Qrefl = Qref2;
Qref3 = Qref2;
Qref = [Qrefl Qref2 Qref3];

%Qmin = [0.9 1 0.7];
%Qmax = [1 1 1];

Qorg = Qref;
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for kk = 1:loop
if kk ==l

Ch = Qorg;
read_in(Ch);
[ps,mcp] = call_ed;

%RT market
% mcp = [mcp(1);9.8;10.1279;9.8;9.8;mcp(end)];

[nhr,nsup] = size(ps);

%RT
%

else
read_in(Ch); %update the datafile
[ps,mcp] = call_ed;

market
mcp = [mcp(1);9.8;10.1279;9.8;9.8;mcp(end)];

end
psrec{kk} = ps;
ps = ps(2:nhr,:);
mcp_rec{kk} = mcp;
mcp = mcp(2:nhr,:);
for i = 1:3

Pd(:,i) = mcp - Pref(:,i);
Qd(:,i) = PEM{i} * Pd(:,i);
Q(:,i) = Qd(:,i) + Qref(:,i);
Ql(:,i) = Qorg(:,i).*Qmin(i);
Q2(:,i) = Qorg(:,i).*Qmax(i);

end
Q = max(Q, Ql);
Q = min(Q, Q2);

Ch = Q;
ch_rec{kk+l} = Q;

end
ch_rec{l} = Qref;

for 11 = l:loop
if 11 ==l
figure
hl = axes;
set(gca,'XLim',[1,24],
set(gca,'XTick',l:1:24
set(get(gca,'XLabel'),
set(get(gca,'YLabel'),
hold on
plot(psrec{l}(2:nhr,:

'YLim',[0,1])

,'YTick',0:0.1:l)
'String', 'Hours')
'String','Generation')

figure
h2 = axes;
set(gca,'XLim',[l,24],'YLim',[9.5,13])
set(gca,'XTick',l:l:24,'YTick',9.5:0.5:13)
set(get(gca,'XLabel'),'String','Hours')
set(get(gca,'YLabel'),'String','Price')
hold on
plot(mcp_rec{l}(2:nhr,:))

figure
h3 = axes;
set(gca,'XLim',[l,24],'YLim',[0.25,0.55])
set(gca,'XTick',l:1:24,'YTick',0.25:0.02:0.55)
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set(get(gca,'XLabel'),'String','Hours')
set(get(gca,'YLabel'),'String','Load')
hold on
plot(ch_rec{l}(l:nhr-1,:))
else

% plot(hl,ps_rec{ll}(2:nhr,:),'LineWidth',6)
plot(hl,ps_rec{ll}(2:nhr,l),'-','LineWidth',6,'Color','blue')
plot(hl,ps_rec{ll}(2:nhr,2),'--','LineWidth',6,'Color','green')
plot(hl,ps_rec{ll}(2:nhr,3),'-.','LineWidth',6,'Color','red')

plot(h2,mcp_rec{ll}(2:nhr,:),'LineWidth',6,'Color','green')
plot(h3,ch_rec{ll}(l:nhr-l,l),'-

','LineWidth',6,'Color','magenta')
plot(h3,ch_rec{ll}(l:nhr-1,2),'--

','LineWidth',6,'Color','yellow')
plot(h3,ch_rec{ll}(l:nhr-1,3),'-

','LineWidth',6,'Color','cyan')
end

end
disp('end of loop')
saveas(hl,'J:\MS Thesis\Thesis\Chapter 4_figures\24_13 GSHB.fig')
saveas(h2,'J:\MS Thesis\Thesis\Chapter 4_figures\24_13_p_SHB.fig')
saveas(h3,'J:\MS Thesis\Thesis\Chapter 4_figures\24 13 DSHB.fig')

%% input interface
function read_in(Ch)

%write into a temporary file
fid00 = fopen('psatdata_24_THS_l.gms','r'); %initialize
fidll = fopen('psatdata.gms','w+'); %create a temporary file
frewind(fid00);
while 1

tOO = fgetl(fid00);
% tll = fgetl(fidll);

if strcmp(t00,'$kill Ch'),
break

else
fprintf(fidll,'%s\n',tOO);

end
end
%tll = fgetl(fidll); %point to the next line of 'parameter Ch'
fprintf(fidll,'$kill %s\n','Ch');
fprintf(fidll,'parameter %s /\n','Ch');
[nH,nLd] = size(Ch);
for j = l:nLd,

fprintf(fidll,'%s%s.%d %f\n','H','O',j,Ch(l,j));
for i = 1:nH,

fprintf(fidll,'%s%d.%d %f\n','H',i,j,Ch(i,j));
% tll = fgetl(fid00);

end
end
fprintf(fidll,'/;\n');
fprintf(fidll, '%s\n', '$offempty');
%write back
fid00 = fopen('psatdata_24_THS_l.gms','w+');
fidll = fopen('psatdata.gms','r'); %create a temporary file
frewind(fidll);
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while 1
tll = fgetl(fidll);
if strcmp(tll,'$offempty');%0429

break
else

fprintf(fid00,'%s\n',tll);
end

end
fprintf(fid00,'%s\n','$offempty');
fclose(fidll);
fclose(fid00);

%% ----------------------------------------------------------------
function varargout = call_ed

status = 0;
tO = clock;
[status,result] = system(['gams ','fm_THS_l.gms']);
disp([' GAMS routine completed in ',num2str(etime(clock,tO)),' s'])
if status

disp(result)
disp('Error!!')

return

end

nout = 0;
EPS = eps;
clear psatsol
psatsol

if nout < nargout
for i = nout+l:nargout

varargout{i} = [];
end

end

if nout > nargout
varargout(nargout+1:nout) = [];

end

Running the Proposed Bidding Mechanism in the HA Market with the 24-Period Data
Set

% The real time operation of renewable energy
function IAS09_THS24_RT
% wind coefficient
% generated by random('wbl',l.*ones(24,1),7.*ones(24,1))
% generating PEM
emgen_THS24
PEM = PEM6;

%initial reference point
Pref = 10.4.*ones(24,1);
Pref = [Pref Pref Pref];
Qorg = [0.3255 0.3021 0.2890 0.2815 0.2793 0.2880
0.3027 ...

0.3371 0.3758 0.4136 0.4431 0.4669 0.4855
0.4951 ...

0.4992 0.5000 0.4981 0.4850 0.4559 0.4261
0.4222 .
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0.3941 0.3523 0.3099]';
Qorg = [Qorg Qorg Qorg];

Qref = Qorg;

%simulating real-time market
for rt = 1:24

display(rt);
PEM_RT = zeros(24,24);

PEM_RT(rt:end,rt:end) = PEM(rt:end,rt:end);
RT_iter(PEM_RT,Pref,Qref,Qorg,WindCo(:,rt),rt)

end

%rt is the RT market index
%% compute market equilibrium in every hourly ahead market

function RT_iter(PEM,Pref,Qref,Qorg,WindCo,rt)

loop = 10;

% Timeframe = 24
Pd = zeros(24,3);
Qd = zeros(24,3);
Gwind = [ones(24,1)
read_in(Gwind,'Sup'

for kk = l:loop
if kk ==1

Ch = Qorg;
read_in(Ch,
[ps,mcp] =
[nhr,nsup]

else

,WindCo, ones (24, 1) ]

'Ch');
call_ed;
= size(ps);

read_in(Ch,'Ch'); %update the datafile
[ps,mcp] = call_ed;

end
ps_rec{kk} = ps;

ps = ps(2:nhr,:);
mcp_rec{kk} = mcp;
mcp = mcp(2:nhr,:);

for i = 1:3

Pd(:,i) = mcp - Pref(:,i);

Qd(:,i) = PEM * Pd(:,i);

Q(:,i) = Qd(:,i) + Qref(:,i);
Ql(:,i) = Qorg(:,i).*Qmin(i);
Q2(:,i) = Qorg(:,i).*Qmax(i);

end
Q = max(Q, QI);

Q = min(Q, Q2);
Ch = Q;

ch_rec(kk+l} = Q;
end

ch_rec{l} = Qref;

for 11 = l:loop
if 11 ==1
figure
hl = axes;
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set(gca,'XLim',[1,24],'YLim',[0,1])

set(gca,'XTick',1:l:24,'YTick',0:0.1:1)
set(get(gca,'XLabel'),'String','Hours')
set(get(gca,'YLabel'),'String','Generation')
hold on
plot(ps_rec{l} (2:nhr,:))

figure
h2 = axes;
set(gca,'XLim',[1,24],'YLim',[9.5,13])
set(gca,'XTick',l:1:24,'YTick',9.5:0.5:13)
set(get(gca,'XLabel'),'String','Hours')
set(get(gca,'YLabel'),'String','Price')
hold on
plot(mcp_rec{l}(2:nhr,:))

figure
h3 = axes;
set(gca,'XLim',[1,24],'YLim',[0.25,0.55])
set(gca,'XTick',l:l:24,'YTick',0.25:0.02:0.55)
set(get(gca,'XLabel'),'String','Hours')
set(get(gca,'YLabel'),'String','Load')
hold on
plot(ch_rec(l})
else

plot(hl,ps_rec(ll)(2:nhr,:),'LineWidth',6)
plot(hl,ps_rec{ll}(2:nhr,l),'-','LineWidth',6,'Color','blue')

plot(hl,ps_rec{ll}(2:nhr,2),'--','LineWidth',6,'Color','green')
plot(hl,ps_rec{ll}(2:nhr,3),'-.','LineWidth',6,'Color','red')
plot(h2,mcp_rec(ll}(2:nhr,:),'LineWidth',6,'Color','green')
plot(h3,chrec{ll}(l:nhr-l,:),'LineWidth',6,'Color','yellow')

end
end
disp('end of loop')

% ps = zeros(24,3);

% ch = zeros(24,1);
% mcp = zeros(24,1);
% fdcm =
0; %in
itialize demand clearing market flag
% for nn = rt:24

% dif = abs(mcp_rec{ll}(nn,:)- mcp_rec{ll-l}(nn,:));
% if
-(dif) %if

not convergent

% % for renewable energy, G2 cost = 0. Thus unconvergency can only

caused demand clears the market

% % if dif > max(10.7-9.8, 12.6-
10.7) %unconvergency due to slope
value
% % mcp(nn,:) =
10.7; %the price is known
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% %
syms(genvarname(['ch',num2str(nn)]))
the load is unknown
% %
else
onvergency due to demand clears the
% fdcm = 1;
% ch(nn,:) = (1 +
WindCo(nn,rt)*0.7)/3;
of (G1+G2)
% mcp(nn,:)=
syms(genvarname(['p',num2str(nn)]));
unknown
% else
% mcp(nn,:) =

mcp_rec{ll} (nn+l,:);
the convergent one
% ch(nn,:)=
syms(genvarname(['d',num2str(nn)]));
set as variable
% end
% end

%claim

%unc
market

%demand equals to the capacity

%claim the price is

%the price as

%the demand

% if fdcm
% f = (ch - Qref)- PEM*(mcp - Pref);
% varargout =
solve(f(l),f(2),f(3),f(4),f(5),f(6),f(7),f(8),f(9),f(10),...

f(11) ,f(12),f(13),f(14),f(15),f(16),f(17),f(18),...
% f(19),f(20),f(21),f(22),f(23),f(24));
% end
figure
h4 = axes;
set(gca,'XLim',[l,24],'YLim',[0,1.5])
set(gca,'XTick',l:l:24,'YTick',0:0.1:1.5)
set(get(gca,'XLabel'),'String','Hours')
set(get(gca,'YLabel'),'String','Wind')
hold on
plot(h4,WindCo,'LineWidth',6,'Color','blue')

saveas(hl,['J:\MS Thesis\Thesis\Chapter
4_figures\24_14_Graw',num2str(rt),'.fig'])
saveas(h2,['J:\MS Thesis\Thesis\Chapter
4_figures\24_14 p_raw',num2str(rt),'.fig'])
saveas(h3,['J:\MS Thesis\Thesis\Chapter
4_figures\24_14 Draw',num2str(rt),'.fig'])
saveas(h4,['J:\MS Thesis\Thesis\Chapter
4_figures\24_14wind',num2str(rt),'.fig'])
fclose('all') %close the files opened by "save"

%% input interface
function read_in(xx,xxname)

%write into a temporary file
fid00 = fopen('psatdata_24rt_THS_l.gms','r'); %initialize
fidll = fopen('psatdata.gms', 'w+'); %create a temporary file
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frewind(fid00);
while 1

tOO = fgetl(fid00);
% tll = fgetl(fidll);

if strcmp(t00,['$kill ',xxname]),
break

else
fprintf(fidll,'%s\n',tOO);

end
end
%tll = fgetl(fidll); %point to the next line of 'parameter Ch'
fprintf(fidll,'$kill %s\n',xxname);
fprintf(fidll,'parameter %s /\n',xxname);
tOO = fgetl(fid00);

[nH,nLd] = size(xx);
for j = l:nLd,

fprintf(fidll,'%s%s.%d %f\n','H','O',j,xx(l,j));
tOO = fgetl(fid00);

for i = l:nH,
fprintf(fidll,'%s%d.%d %f\n','H',i,j,xx(i,j));

% tll = fgetl(fid00);
tOO = fgetl(fid00);

end
end
fprintf(fidll,'/;\n');
tOO = fgetl(fid00);

while 1
tOO = fgetl(fid00);
if strcmp(t00,'$offempty'),

break
else

fprintf(fidll,'%s\n',tOO);
end

end
fprintf(fidll,'%s\n','$offempty');

%write back
fid00 = fopen('psatdata_24rt_THS_l.gms','w+')
fidll = fopen('psatdata.gms','r'); %create a
frewind(fidll);
while 1

tll = fgetl(fidll);
if strcmp(tll,'$offempty');%0429

break
else

fprintf(fid00,'%s\n',tll);
end

end
fprintf(fid00, '%s\n','$offempty');
fclose(fidll);
fclose(fid00);

temporary file

function varargout = call_ed
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status = 0;
tO = clock;
[status,result] = system(['gams ','fm_THS_l.gms']);
disp([' GAMS routine completed in ',num2str(etime(clock,t0)),' s'l)
if status

disp(result)
disp('Error!!')

return
end
nout = 0;
EPS = eps;
clear psatsol
psatsol
if nout < nargout

for i = nout+l:nargout
varargout{i} = [];

end
end

if nout > nargout
varargout(nargout+l:nout) = [];

end

The Optimization Problem Formulation of the Proposed Bidding Mechanism

$title GAMS/PSAT interface for solving the electricty market problem
*

$onempty
$offlisting
$offupper

*

* include data created with the PSAT-GAMS Interface
$if exist psatglobs_24_THS_l.gms $include psatglobs_24_THS_l.gms
*

sets B
L
G
C
SW
PV
H
Day
Week
Br(B)

index of buses
index of lines
index of suppliers
index of consumers
index of slack buses
index of pv buses
index of hours
index of days
index of weeks
reference bus index

sets supply /PsO, Psmax, Psmin,
mut, mdt, rut, rdt,

demand /PdO, Pdmax, Pdmin,

/l*%nBus%/,
/l*%nLine%/,
/1*%nPs%/,
/l*%nPd%/,
/1*%nSW%/,
/1*%nPV%/,
/HO*%nH%/,
/D1*D7/,
/Wl*W52/,
/%nBusref%/;

Cs, suc,
uO, yO, z0/,
tgphi, Cd/,
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data /VO, tO, PgO, Qg0, Pl0, Q10,

Qgmax, Qgmin, Vmax, Vmin, ksw, kpv/,

lines /g, b, gO, bO, Pijmax, Pjimax/,
days /wwkdy, wwknd, swkdy, swknd, sfwkdy, sfwknd/,

vsc /imin, imax, omega, line/;

alias (B,BB);
alias (H,HH);
alias (G,GG);

parameters S(G, supply)
D(C,demand)
X (B, data)
N(L, lines)
lambda (vsc)
Ps_idx(B,G)
Pd_idx(B,C)
SW_idx(B,SW)
PV_idx(B,PV)
Ch(H,C)
Sup(H,G)
CC(H,G)
Li(L,B)
Lj(L,B)
Gh(B,BB)
Bh(B,BB)
Ghc(B,BB)
Bhc(B,BB)

supply data //,
demand data //,
network data //,
line data //,
loading paramter //,
supply incidence matrix //,
demand incidence matrix //,
slack bus incidence matrix //,
PV bus incidence matrix //,
charge profile //,
supply profile //,
generation cost changing coefficient //,
node-to-branch (ij) incidence matrix //,
node-to-branch (ji) incidence matrix //,
conductance matrix //,
admittance matrix //,
conductance matrix (critical system) //,
admittance matrix (critical system) //;

scalars MLC maximum
pi /3.1416/
T /0/;

loading condition /0/,

* include data created with the PSAT-GAMS Interface
$if exist psatdata_24rt_THS_l.gms $include psatdata_24rt_THS_.gms
*

T = card(H)-1;

*

* ---- C OMMO N VARIABLES

variables obj value to be minimized,
Pij(H,L) flows from bus i to bus j,
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Pji(H,L) flows from bus j to bus i,
V(H,B) bus voltage magnitudes,
a(H,B) bus voltage phases,
Ps(H,G) power supply bids,
Pd(H,C) power demand bids,
Qg(H,B) generator reactive powers,
u(H,G) 1 if gen. G is committed in hour H,
y(H,G) 1 if gen. G is started-up at the beginning of hour H,
z(H,G) 1 if gen. G is shut-down at the beginning of hour H;

positive variables z(H,G);

binary variables u(H,G),
y(H,G);

----------------------------------------

* initial values
----------------------------------------

Qg.l(H,B) = X(B,'Qg0');
V.1(H,B) = X(B,'VO');
a.l(H,B) = X(B,'tO');
Ps.l(H,G) = Sup(H,G)*0.5*(S(G,'Psmax')+S(G,'Psmin'));
Pd.l(H,C) = Ch(H,C)*0.5*(D(C,'Pdmax')+D(C,'Pdmin'));

----------------------------------------

* zero-one variable initialization
----------------------------------------

z.up(H,G) = 1;
u.up(H,G) = 1;
y.up(H,G) = 1;
z.lo(H,G) = 0;
u.lo(H,G) = 0;
y.lo(H,G) = 0;
S(G,'uO') = 0$(S(G,'yO')<=O)+1$(S(G,'yO ')>=l);
S(G,'zO') = S(G,'mdt')+l;

----------------------------------------

* limits
----------------------------------------

* Bid Blocks
Pd.up(H,C) = Ch(H,C)*D(C,'Pdmax');
Pd.lo(H,C) = Ch(H,C)*D(C,'Pdmin');

* Voltages & Voltage Limits
V.up(H,B) = X(B,'Vmax');
V.lo(H,B) = X(B,'Vmin');
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a.up(H,B) = pi;
a.lo(H,B) = -pi;

* Generator Reactive Power Limits
Qg.up(H,B) = X(B,'Qgmax');
Qg.lo(H,B) = X(B,'Qgmin');

* Flow limits on transmission
Pij.up(H,L) = N(L,'Pijmax');
Pij.lo(H,L) = -N(L,'Pijmax');
Pji.up(H,L) = N(L,'Pijmax');
Pji.lo(H,L) = -N(L,'Pijmax');

lines

*---------------------------------------------------------------------

* define equations
*---------------------------------------------------------------------

equation cost
pmaxlim(H, G)
pminlim(H, G)
logicupdnl(H,G)
logicupdn2(H,G)
rampdown(H,G)
rampup (H, G)
uptimel(G)
uptime2(H,G)
uptime3 (H,G)
dwntimel (G)
dwntime2 (H,G)
dwntime3 (H, G)

objective function,
maximum power supply output,
minimum power supply output,
start-up and shut-down and running logic 1,
start-up and shut-down and running logic 2,
maximum ramp down rate limit,
maximum ramp up rate limit,
mimimum up time logic 1,
mimimum up time logic 2,
mimimum up time logic 3,
mimimum down time logic 1,
mimimum down time logic 2,
mimimum down time logic 3;

* maximum and minimum power supply output constraints
*---------------------------------------------------------------------

pmaxlim(H,G)$(S(G,'Psmax') and (ord(H) gt 1)).. Ps(H,G) =1=
Sup(H,G)*S(G,'Psmax');
pminlim(H,G)$(S(G,'Psmin') and (ord(H) gt 1)).. Ps(H,G) =g=
Sup(H,G)*S(G, 'Psmin');

*---------------------------------------------------------------------

* logic up and logic down
*---------------------------------------------------------------------

*logicupdnl(H,G)$(ord(H) gt 1).. y(H,G)-z(H,G) =e= u(H,G)-u(H-1,G);
*logicupdn2(H,G)$(ord(H) gt 1).. y(H,G)+z(H,G) =1= 1;

* -----------------------------------------------------------------ramp up and ramp down

* ramp up and ramp down

205



* ----------------------------------------------

*rampdown(H,G)$(S(G,'rdt') and (ord(H) gt 1)).. Ps(H-1,G)-Ps(H,G)
S(G, 'rdt');

*rampup(H,G)$(S(G,'rut') and (ord(H) gt 1)).. Ps(H,G)-Ps(H-1,G) =1=
S(G, 'rut');

-----------------------------------------------------

* up time constraints
-------------------------------------- -----------------

*uptimel(G).. sum(H$((ord(H) gt 1) and (ord(H) le
* min(T,(S(G,'mut')-S(G,'y0'))*S(G,'u0'))+ )),l-u(H,G))=e=0;

*uptime2(H,G)$((ord(H) gt
and
* (ord(H) le T-S(G,'mut')+1+1))..

sum(HH$((ord(HH) ge ord(H)) and (ord(HH) le
ord(H)+S(G, mut')-1)),u(HH,G))=g=S(G,'mut')*y(H,G);

*uptime3(H,G)$((ord(H) gt T-S(G,'mut')+2) and (ord(H) le T+1))..
* sum(HH$((ord(HH) ge ord(H)) and (ord(HH) le T+1)),u(HH,G)-
y(H,G) )=g=0;

*----------------------------------------------------------- ---

* down time constraints
*----------------------------------------------------------

*dwntimel(G).. sum(H$((ord(H) gt 1) and (ord(H) le
* min(T,(S(G,'mdt')-S(G,'zO'))*(l-
S(G,'uO')))+l)),u(H,G))=e=0;

*dwntime2(H,G)$((ord(H) gt min(T,(S(G,'mdt')-S(G,'z0'))*(I-
S(G,'uO')))+1)
* and (ord(H) le T-S(G,'mdt')+1+1))..
* sum(HH$((ord(HH) ge ord(H)) and (ord(HH) le
* ord(H)+S(G,'mdt')- )),l-u(HH,G))=g=S(G, 'mdt')*z(H,G);

*dwntime3(H,G)$((ord(H) gt T-S(G,'mdt')+2) and (ord(H) le T+1))..
* sum(HH$((ord(HH) ge ord(H)) and (ord(HH) le T+1)),1-u(HH,G)-
z(H,G))=g=O;

*------------------------------------------------- ------

$if %control% == 1 $goto jfloweq

equation Peq(H,B),
Thetaref(H,B);
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$if %control% == 2 $goto jfloweq

equations Qeq(H,B);

$if %flow% == 0 $goto jfloweq

equations Pijeq(H,L),
Pjieq(H,L);

$1label jfloweq

- -- - ----------------- - - - - - - - - - - - - - - - - - - - -

* ============================ METHOD S

* check method
$if %control% == 1 $goto auction
$if %control% == 2 $goto mcm
$if %control% == 3 $goto opf
$if %control% == 4 $goto vscopf
$if %control% == 5 $goto mlcopf

* ====================== SIMPLE AUCTION

$1label auction

*---------------------------------------------------------------------

* objective function
cost.. obj =e= sum(H$(ord(H) gt 1),

sum(G,CC(H,G)*Ps(H,G)*S(G,'Cs')));
*---------------------------------------------------------------------

equation Pbalance(H);
Pbalance(H).. sum(G,Ps(H,G)) - sum(C,Ch(H,C)) =e= 0;
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$goto solvestat

- - - - - - - - - - - - - - - - - - - - - - - - - - - --====~=

*MARKET CLEARING MECHANISM

- - - -- - - -- - - - -- - - -- - - - -- - - -- --======

$1label mcm

--------------------------------------- ------- -----

* objective function
cost.. obj =e= sum(H$(ord(H) gt 1),

sum(G,Ps(H,G)*S(G,'Cs'))) +
sum(H$(ord(H) gt 1),sum(G,y(H,G)*S(G,'suc')));

-------------------------------------------------

Peq(H,B).. sum(G,Ps_idx(B,G)*Ps(H,G)) - sum(C,Pd_idx(B,C)*Ch(H,C)) -
sum(BB,Bh(B,BB)*a(H,BB)) =e= 0;

equation Pijeq(H,L);
Pijeq(H,L).. Pij(H,L) =e= sum(B,Li(L,B)*a(H,B))-sum(B,Lj(L,B)*a(H,B));

Thetaref(H,B)$Br(B).. a(H,B) =e= 0;

$goto solvestat

* =---- - OPTIMAL POWER FLOW

- - - - - - - - - - - - - - - - - - - - - - - - - - - --======

$1label opf

*--------------------------------------------------

* objective function
cost.. obj =e= sum(H,sum(G,Ps(H,G)*S(G,'Cs')) -
sum(C,Pd(H,C)*D(C, Cd'))) +

sum(H$(ord(H) gt 1),sum(G,y(H,G)*S(G,'suc')));
---------------------------------------------------

Peq(H,B).. sum(G,Ps_idx(B,G)*Ps(H,G)) - sum(C,Pdidx(B,C)*Pd(H,C)) +
Ch(H)*X(B,'Pg0') - Ch(H)*X(B,'P10') -
V(H,B)*sum(BB,V(H,BB)*(Gh(B,BB)*cos(a(H,B)-a(H,BB)) +
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Bh(B,BB)*sin(a(H,B)-a(H,BB)))) =e= 0;

Qeq(H,B).. Qg(H,B) - Ch(H)*X(B,'Q10') -
sum(C, Pd_idx(B,C) * (D (C, 'tgphi' ) *Pd(H, C) ) )
- V(H,B)*sum(BB,V(H,BB)*(Gh(B,BB)*sin(a(H,B)-a(H,BB)) -
Bh(B,BB)*cos(a(H,B)-a(H,BB)))) =e= 0;

Thetaref(H,B)$Br(B).. a(H,B) =e= 0;

*MLCeq.. MLCO - (1+lambda)*(sum(C,Pd(C))+sum(B,X(B,'Pl0'))) =g= 0;

$goto floweq

V OLTAGE STABILITY CONSTRAINED

OPTIMAL POWER FLOW

$1label vscopf

*---------------------------------------------------------------------

* local variables
*---------------------------------------------------------------------

variables Pijc(H,L),
Pjic(H,L),
Vc(H,B),
ac(H,B),
Qgc(H,B),
kg(H),
lambdac(H);

*---------------------------------------------------------------------

* initial values
*---------------------------------------------------------------------

Qgc. (H,B) = X(B,'QgO');
Vc.l(H,B) = X(B,'VO');
ac.l(H,B) = X(B,'tO');
kg.l(H) = 0;

*---------------------------------------------------------------------

* limits
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* ---------------------------------

* Voltages
Vc.up (H, B)
Vc. lo (H, B)
ac.up (H, B)
ac. lo (H, B)
kg.lo(H) =
kg.up(H) =

* Generator

Qgc.up(H,B)
Qgc.lo(H,B)

&
-_

-i

Voltage Limits
X(B, 'Vmax');
X(B, 'Vmin');
pi;

-pi;

;

Reactive Power Limits
= X(B,'Qgmax');
= X(B,'Qgmin');

* Flow limits on transmission lines
Pijc.up(H,L) = N(L,'Pijmax');
Pijc.lo(H,L) = -N(L,'Pijmax');
Pjic.up(H,L) = N(L,'Pijmax');
Pjic.lo(H,L) = -N(L,'Pijmax');

lambdac.up(H)
lambdac.lo(H)

= lambda('lmax');
= lambda('lmin');

-------------------------------------------------------------------

* objective function
cost.. obj =e= (1-lambda('omega'))*sum(H,sum(G,Ps(H,G)*S(G,'Cs')) -

sum(C,Pd(H,C)*D(C,'Cd'))) +
(1-lambda ( 'omega'))*sum(H$(ord(H) gt 1),sum(G,y(H,G)*S(G,'suc')))

sum(H,lambda('omega')*lambdac(H));
---------------------------------------

equations Pceq(H,B),
Qceq(H,B),
Thetacref(H,B);

$if %flow% == 0 $goto jfloweqc

equations Pijceq(H,L),
Pjiceq(H,L);

$1label jfloweqc

Peq(H,B)..

Qeq(H,B)..

sum(G,Ps_idx(B,G)*Ps(H,G)) -
sum(C,Pd_idx(B,C)*Pd(H,C)) +
Ch(H)*X(B,'Pg0') - Ch(H)*X(B,'P10') -
V(H,B)*sum(BB,V(H,BB)*(Gh(B,BB)*cos(a(H,B)-a(H,BB)) +
Bh(B,BB)*sin(a(H,B)-a(H,BB)))) =e= 0;

Qg(H,B) - Ch(H)*X(B,'Q10') -
sum(C,Pd_idx(B,C)*(D(C,'tgphi')*Pd(H,C)))
- V(H,B)*sum(BB,V(H,BB)*(Gh(B,BB)*sin(a(H,B)a(H,BB)) -
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Bh(B,BB)*cos(a(H,B)-a(H,BB)))) =e= 0;

Thetaref(H,B)$Br(B).. a(H,B) =e= 0;

Pceq(H,B).. (1+lambdac(H)+kg(H))*(sum(G,Ps_idx(B,G)*Ps(H,G)) +
Ch(H)*X(B, 'Pg0'))
- (l+lambdac(H))*(sum(C,Pd_idx(B,C)*Pd(H,C)) +
Ch(H)*X(B,'Pl0'))
- Vc(H,B)*sum(BB,Vc(H,BB)*(Ghc(B,BB)*cos(ac(H,B)-ac(H,BB))

Bhc(B,BB)*sin(ac(H,B)-ac(H,BB)))) =e= 0;

Qceq(H,B).. Qgc(H,B) - (l+lambdac(H))*(Ch(H)*X(B,'Q10') +
sum(C,Pd_idx(B,C)*(D(C,'tgphi')*Pd(H,C)))) -
Vc(H,B)*sum(BB,Vc(H,BB)*(Ghc(B,BB)*sin(ac(H,B)-ac(H,BB)) -

Bhc(B,BB)*cos(ac(H,B)-ac(H,BB)))) =e= 0;

Thetacref(H,B)$Br(B).. ac(H,B) =e= 0;

$goto floweq

===========MAXIMUM LOADING CONDITION

$1label mlcopf

----------------------------------------------------

* local variables
----------------------------------------------------

variables kg(H),
lambdac(H);

* initial values
*---------------------------------------------------------------------

kg.l(H) = 0;
lambdac.l(H) = 1;

----------------------------------------------------

* limits
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* Bid Blocks
Ps.up(H,G) = S(G,'PsO');
Pd.up(H,C) = Ch(H)*D(C,'PdO');
Ps.lo(H,G) = S(G,'PsO');
Pd.lo(H,C) = Ch(H)*D(C,'PdO');
* Loading Parameter
kg.lo(H) = -1;
kg.up(H) = 1;
lambdac.lo(H) = 0;

------------------------------------------------------

* objective function
cost.. obj =e= sum(H,-lambdac(H));
*-------------------------------------

Peq(H,B).. (lambdac(H)+kg(H))*(sum(G,Ps_idx(B,G)*Ps(H,G)) +
Ch(H)*X(B,'PgO')) -
lambdac(H)*(sum(C,Pd_idx(B,C)*Pd(H,C)) + Ch(H)*X(B,
V(H,B)*sum(BB,V(H,BB)*(Gh(B,BB)*cos(a(H,B)-a(H,BB))
Bh(B,BB)*sin(a(H,B)-a(H,BB)))) =e= 0;

Qeq(H,B).. Qg(H,B) - lambdac(H)*(Ch(H)*X(B,'Q10') +
sum(C,Pd_idx(B,C)*(D(C, 'tgphi')*Pd(H,C))))
V(H,B)*sum(BB,V(H,BB)*(Gh(B,BB)*sin(a(H,B)
Bh(B,BB)*cos(a(H,B)-a(H,BB)))) =e= 0;

-a(H,BB)) -

Thetaref(H,B)$Br(B).. a(H,B) =e= 0;

------------------------------------------------------

* flow limit equations
-----------------------------------------------------

$1label floweq

$if %flow% == 0 $goto solvestat
$if %flow% == 1 $goto iflows
$if %flow% == 2 $goto pflows
$if %flow% == 3 $goto sflows

$1label pflows

Pijeq(H,L).. Pij(H,L) =e= N(L,'g0')*sum(B,Li(L,B)*V(H,B)*V(H,B)) -
N(L, 'b')*sum(B,Li(L,B)*V(H,B)*sin(a(H,B)))*
sum(B,Lj(L,B)*V(H,B)*cos(a(H,B))) +
N(L, 'b') *sum(B,Li(L,B)*V(H,B)*cos(a(H,B)) ) *
sum(B,Lj(L,B)*V(H,B)*sin(a(H,B))) -
N(L, 'g')*sum(B,Li(L,B)*V(H,B)*cos(a(H,B)))*
sum(B,Lj(L,B)*V(H,B)*cos(a(H,B))) -
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Pjieq(H,L)..

N(L,'g')*sum(B,Li(L,B)*V(H,B)*sin(a(H,B) ) ) *
sum(B,Lj(L,B)*V(H,B)*sin(a(H,B)));

Pji(H,L) =e= N(L,'g0')*sum(B,Lj(L,B)*V(H,B)*V(H,B)) -
N(L,'b')*sum(B,Lj(L,B)*V(H,B)*sin(a(H,B)))*
sum(B,Li(L,B)*V(H,B)
N(L,'b')*sum(B,Lj(L,
sum(B,Li(L,B) *V(H,B)
N(L, 'g')*sum(B,Lj(L,
sum(B,Li(L,B)*V(H,B)
N(L, 'g')*sum(B,Lj(L,
sum(B, Li (L, B) *V(H, B)

*cos(a(H,B))) +
B)*V(H,B)*cos(a(H,B)))*
*sin(a(H,B))) -
B)*V(H,B)*cos(a(H,B) ) ) *
*cos(a(H,B))) -
B) *V(H,B) *sin(a(H, B) ) ) *
*sin(a(H,B)));

%control% == 3 $goto solvestat
%control% == 5 $goto solvestat

'b')$(ord(L) eq lambda('line')) = -1E-6;
'g')$(ord(L) eq lambda('line')) = 0;
'bO')$(ord(L) eq lambda('line')) = 0;
'gO')$(ord(L) eq lambda('line')) = 0;

Pijceq(H,L).. Pijc(H,L) =e= N(L,'gO0')*sum(B,Li(L,B)*Vc(H,B)*Vc(H,B)) -
N(L,'b')*sum(B,Li(L,B)*Vc
sum(B,Lj (L,B) *Vc(H,B) *cos
N(L,'b')*sum(B,Li(L,B)*Vc
sum(B,Lj(L,B)*Vc(H,B)*sin
N(L, 'g')*sum(B,Li(L,B)*Vc
sum(B,Lj(L,B)*Vc(H,B)*cos
N(L, 'g')*sum(B,Li(L,B)*Vc

(H,B)*sin(ac(H,B) ) ) *
(ac(H,B))) +
(H,B)*cos(ac(H,B)))*
(ac(H,B))) -
(H,B)*cos(ac(H,B)))*
(ac(H,B))) -
(H,B)*sin(ac(H,B)) ) *

sum(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B)));

Pjiceq(H,L).. Pjic(H,L) =e= N(L,'g0')*sum(B,Lj(L,B)*Vc(H,B)*Vc(H,B)) -
N(L,'b')*sum(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B)))*
sum(B,Li(L,B)*Vc(H,B)*cos(ac(H,B))) +
N(L,'b')*sum(B,Lj(L,B)*Vc(H,B)*cos(ac(H,B)))*
sum(B,Li(L,B)*Vc(H,B)*sin(ac(H,B))) -
N(L,'g')*sum(B,Lj(L,B)*Vc(H,B)*cos(ac(H,B) ) ) *
sum(B,Li(L,B)*Vc(H,B)*cos(ac(H,B))) -
N(L,'g')*sum(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B)))*
sum(B,Li(L,B)*Vc(H,B)*sin(ac(H,B)));

$goto solvestat

$1label iflows

Pijeq(H,L).. Pij (H,L)
sqr (N(L,
N(L, 'g')
N(L, 'b')
N(L, 'b')
N(L, 'bO'
sqr (N(L,
N(L, 'b')
N(L, 'g')
N(L, 'g')

=e= sqrt(
'g')*sum(B,Li(L,B)*V(H,B)*cos(a(H,B) ) )-
*sum(B,Lj(L,B)*V(H,B)*cos(a(H,B)))-
*sum(B,Li(L,B)*V(H,B)*sin(a(H,B) ) ) +
*sum(B,Lj(L,B)*V(H,B)*sin(a(H,B)))-
)*sum(B,Li(L,B)*V(H,B)*sin(a(H,B))))+
'b')*sum(B,Li(L,B)*V(H,B)*cos(a(H,B) ) )-
*sum(B,Lj(L, B)*V(H,B)*cos(a(H,B) ))+
*sum(B,Li(L,B)*V(H,B)*sin(a(H,B)))-
*sum(B,Lj(L,B)*V(H,B)*sin(a(H,B)) )+
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Pjieq(H,L)..

N(L,'bO)*sum(B,Li(L,B)*V(H,B)*cos(a(H,B)))));

Pji(H,L) =e= sqrt(

Nq(L, ' *sum(BLi (L ) V(H, ,B) (a ()) )
N(L,gl)*sum(B,Lj(L,B)*V(H,B)*sn(a(H,B)))+

N(L,Ib)*sumn(B,L(L,B)*V(H,B)*sin(a(H,B)))+
N(L, 'bO ) *sum(B, Lj(L, B) *V(H, B)*i(a (H, B)))-
qN(L,'b) *sum(B,Lj (L,B)*V(H,B) *cs(a(HB) ))-
Nq(b*N(LBLi*(BLB*(,B)*(,cos(a(H,B)))
N(L,gb)*sum(B,L(L,B)*V(H,B)*csi(a(H,B)))+
N(L,Ig)*sum(B,Li(L,B)*V(H,B)*sin(a(H,B)))+

N(L, 'bO ) *sum(B,Lj (Li B)*VHB)*o(a (H, B) ));

$if %control% ==3 $goto solvestat
$if %control% ==5 $goto salvestat

N(L,'b')$(ord(L) eq larnbda('line')) = -1E-6;
N(L,'g')$(ord(L) eq larnbda('linel)) = 0;
N(L,'bO')$(ord(L) eq lambda('line')) = 0;
N(L,'gO')$(ord(L) eq lambda(Iline')) = 0;

Pijceq(H,L)

Pj iceq (H, L)

Pijc(H,L) =e= sqrt(
sqr(N(L, igl)*sum(B,Li(L,B)*Vc(H,B)*cas(ac(H,B)))
N(L, 'g') *sum(B, Lj (L, B) *Vc (H, B)*co(ac (H, B))) -

N(L,'b)*sum(B,Li(L,B)*Vc(H,B)*sin(ac(H,B)))+
N(L,fbl)*sum(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B)))-
N(L,'bO)*sum(B,Li(L,B)*Vc(H,B)*sin(ac(H,B))))+
sqr(N(L,lb)*sun(B,Li(L,B)*Vc(H,B)*cos(ac(H,B)))

N(L, 'b' )*sum(B, Lj (L, B) *Vc (H, B)*co(ac (H, B) ))
N(L,'g)*sum(B,Li(L,B)*Vc(H,B)*sin(ac(H,B)))-

N(L,'g)*sum(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B)))+
N(L,'bO)*SUM(B,Li(L,B)*Vc(H,B)*cos(ac(H,B)))));

Pjic(H,L) =e= sqrt(
sqr(N(L, lgl)*sum(B,Li(L,B)*Vc(H,B)*cos(ac(H,
N(L, 'g') *sum(B, Li (L, B) *Vc (H, B)*co(ac (H, B))
N(L,'b)*sum(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B)))

N(L, 'b') *sum(B, Li (L, B) *Vc (H, B)*si(ac (H, B))
N(L, bO')*sum(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B))
sqr(N(L, 'b ) *sum(B,Lj (L,B) *Vc(H,B) *cos(ac (H,
N(L, W') *sum(B, Li (L, B) *Vc (H, B)*co(ac (H, B))
N(L, 'g' )*sum(B,Lj (L,B) *Vc(H,B) *sjn(ac(H,B))

N(L, Ib')*sum(B,Lj(L,B)*Vc(H,B)*cs(ac(H,B)))

B)))

+

B)))
+

+

$goto salvestat

$label sflows

Pijeq(H,L). . Pij(H,L) =e= sum(B,Li(L,B)*V(H,B))*sqrt(
sqr(N(L,'g)*sum(B,Li(L,B)*V(H,B)*cos(a(H,B)))-
N(L, 'g' )*sum(B, Lj (L, B) *V(H, B)*o(a (H, B) )) -

N (L, 'b') *sum(B, Li (L, B) *V(H, B)*s(a (H, B) ) )+
N(L,'b)*sum(B,Lj(L,)*V(H,B)*sin(a(H,B)))-
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)*sum~(BLj(LB) *V(HB) *sin(a(H,B) )) )+
'b' )*sum(BLi(LB) *V(HB) *cos(a(HB))) -
*sum(B,Lj (L,B) *V(H,B) *cos(a(H,B) ))+
*sum(BLi (L,B) *V(HB) *sin(a(HB))) -

*sm(BLj (L,B) *V(HB) *sin(a(HB))) +
*sumj(BLj(LB) *V(HB) *co(a(HB)))));

Pj ieq (H, L). .

$if
$if

N (L,
N (L,
N (L,
N (L,

Pji(H,L) =e= sumn(B,Li(L,B)*V(H,B))*sqrt(
sqr (N(L, 'g') *sum(B, Lj (L, B) *V(H, B) *cos (a(H, B) )

N (L, b') *sum(BLj (L, B) *V(HB)*o(a (H, B) ))
N(L,Ybl)*sum(B,Li(L,B)*V(H,B)*sin(a(H,B)))+
N(L, 'bO')*sum(B,Lj (L,B) *V(H,B) *sin(a(H,B) ) ) )
s N (L, b')*sum(B, Lj(L, B)*V(, B) *co(a(H, B) )
sN(L*sInl*(B,L(L,B)*V(H,B)*cos(a(H,B)))
N(L,gbl)*sum(B,Li(L,B3)*V(H,B)*cs(a(H,B)))+
N(L,fgl)*sum(B,Li(L,B)*V(H,B)*sin(a(H,B)))+

N(L, 'bO ) *sumn(B, Li(L, B) *V(H, B)*o(a (H,B) ))));

%control% ==3 $goto solvestat
%control% ==5 $goto solvestat

'b')

'bO'
'gOl

(ord(L) eq larnbda('linel)) = -1E-6;
(ord(L) eq larnbda('line')) = 0;
$(ord(L) eq larnbda('line')) = 0;
$(ord(L) eq larnbda('line')) = 0;

Pi jceq (H, L).

Pj iceq (H, L).

Pijc(H,L) =e= surn(B,Li(L,B)*Vc(H,B))*sqrt(
sqr(N(L,Ig')*sum(B,Li(L,B)*Vc(H,B)*cos(ac(H,B)))-
N(L,Ig)*sum(B,Lj(L,B)*Vc(H,B)*cos(ac(H,B)))-
N(L, 'b') *sum(BLi (L, B) *Vc (H, B)*si(ac (H, B) ))
N(L,Ib)*sun(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B)))-
N(L, 'bO ') *sum(B,Li (L, B) *Vc (H,B) *sin (ac (H, B) )))
sqr(N(L,Ibt )*sum(B,Li(L,B)*Vc(H,B)*cos(ac(H,B)))-
N(L, b') *sum(BLj (L, B) *Vc (H, B)*co(ac (H, B) ))
N(L,Ygl)*sum(B,Li(L,B)*Vc(H,B)*sin(ac(H,B)))-
N(L,'g)*sun(B,Li(L,B)*Vc(H,B)*sin(ac(H,B)))+
N(L,'b 1 )*sum(B,Li(L,B)*Vc(H,B)*cos(ac(H,B)))));

Pjic(H,L) =e= sum(B,Li(L,B)*Vc(H,B))*sqrt(
sqr(N(L,lg)*sum(B,L(L,B)*Vc(H,B)*cos(ac(H,B)))-
N(L, Igl)*sum(B,Li(L,B)*Vc(H,B)*cos(ac(H,B)))-
N(L,ebl)*sum(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B)))+
N(L, bI)*surn(B,Li(L,B)*Vc(H,B)*sin(ac(H,B)))-
N(L,,bO)*SU~m(B,Lj(L,B)*Vc(H,B)*sin(ac(H,B))))+
sqr(N(L,'b)*sun(B,Li(L,B)*Vc(H,B)*cos(ac(H,B)))-
N(L,Ib)*sum(B,Li(L,B)*Vc(H,B)*cos(ac(H,B)))+
N(L,'g)*sum(B,L(L,B)*Vc(H,B)*sin(ac(H,B)))-
N(L,'g)*sun(B,Li(L,B)*Vc(H,B)*sin(ac(H,B)))+
N(L, 'bO ')*sum(B,Lj (L, B) *Vc (H, B)*co(ac (H, B) ))));

$goto solvestat

* ----------------------------------------------------
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sqr (N (L,
N(L, 'b')
N(L, 'g')
N(L, 'g')
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* Solve Market Problem
*----------------------------------------------------- --------

$1label solvestat
model market /cost,pmaxlim,pminlim,pbalance/;

option iterlim = 100000

$if %control% == 1
$if %control% == 2
$if %control% == 3
$if %control% == 4
$if %control% == 5
$if %control% == 6

$1label linearmodel

solve market using
$goto skipone
parameters upar(H,G

$goto linearmodel
$goto linearmodel
$goto nonlinearmodel
$goto nonlinearmodel
$goto nonlinearmodel
$goto nonlinearmodel

ip minimizing obj;

upar(H,G) = u.1(H,G);

equations cost2;

cost2.. obj =e= sum(H,sum(G,Ps(H,G)*S(G,'Cs')) -
sum(C,Pd(H,C)*D(C,'Cd')));

Ps.up(H,G) = S(G,'Psmax')*upar(H,G);
Ps.lo(H,G) = S(G,'Psmin')*upar(H,G);

$if %control% == 1
model market2 /cost2,Pbalance/;

$if %control% == 2
model market2 /cost2,Peq,Pijeq,Thetaref/;

solve market2 using ip minimizing obj;
$1label skipone
$goto psatoutput

$1label nonlinearmodel

solve market using minlp minimizing obj;

$if not %control% == 4 $goto psatoutput

lambdac.up = lambdac.l;
lambdac.lo = lambdac.l-1.0E-5;
lambda('omega') = 0;

solve market using minlp minimizing obj;
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$1label psatoutput

$1libinclude psatout Ps.l H G

$if %control% == 1 $1libinclude psatout Pbalance.m H
$if %control% == 1 $goto end_output

$if %control% == 2 $1libinclude psatout Peq.m H B
$if %control% == 2 $goto end_output

$1libinclude psatout V.1 H B
$1libinclude psatout a.1 H B
$1libinclude psatout Qg.l H B
$1libinclude psatout Peq.m H B
$1libinclude psatout Pij.1 H L
$1libinclude psatout Pji.1 H L

$if %control% == 5 $goto no_dual

$1libinclude psatout V.m H B
$1libinclude psatout Pij.m H L
$1libinclude psatout Pji.m H L

$1label no_dual

$if %control% == 3 $goto end_output

$1libinclude psatout lambdac.l H
$1libinclude psatout kg.1 H

$if %control% == 5 $goto end_output

$1libinclude psatout Vc.l H B
$1libinclude psatout ac.l H B
$1libinclude psatout Qgc.l H B
$1libinclude psatout Pijc.l H L
$1libinclude psatout Pjic.1 H L

$label end_output
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